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Abstract

Higher order first integrals in a covariant Hamiltonian framework are
investigated and the special role of the Killing-Yano tensors is pointed
out. The covariant phase-space is extended to include external gauge
fields and scalar potentials. Some nontrivial examples on a three-
dimensional space involving Killing tensors of rank 2 are presented.
It is shown that the conformal Killing vectors and tensors do not in
general produce quantum operators that commute with the Klein-
Gordon operator.
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1. Introduction

The concept of symmetries is one of the key concepts in physics, Noether’s
theorem giving a correspondence between symmetries and conservation
laws.
The evolution of a dynamical system is described in the entire phase-space
and from this point of view it is natural to go in search of conserved quan-
tities to genuine symmetries of the complete phase-space, not just the con-
figuration one. Such symmetries are associated to higher rank symmetric
Stackel-Killing (SK) tensors which generalize the Killing vectors. These
higher order symmetries are known as hidden symmetries and the corre-
sponding conserved quantities are quadratic, or, more general, polynomial
in momenta. Also Killing tensors play a pivotal role in Hamilton-Jacobi
theory of separation of variables and the integrability of finite-dimensional
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Hamiltonian systems [1]. Another natural generalization of the Killing vec-
tors is represented by the antisymmetric Killing-Yano (KY) tensors which
in many respects are more fundamental than the KS tensors.
The conformal extension of the SK tensor equation determines the confor-
mal Stackel-Killing (CSK) tensors which define first integrals of motion of
the null geodesics. Investigations of the hidden symmetries of the higher
dimensional space-times have pointed out the role of the conformal Killing-
Yano (CKY) tensors to generate background metrics with black hole solu-
tions (see, e. g. [2] for a brief review).
In the study of the dynamics of particles in external gauge fields it has been
proved that a gauge covariant Hamiltonian approach of the symmetries [3]
is more convenient and productive.
Passing from the classical motions to the hidden symmetries of a quantized
system it is necessary to investigate the corresponding quantum constants
and separability of the equations of motion. Especially in the case of hidden
symmetries it can appear anomalies representing discrepancies between the
conservation laws at the classical level and the corresponding ones at the
quantum level.
The plan of the paper is as follows. In Section 2 we establish the generalized
Killing equations in a covariant framework including external gauge fields
and scalar potentials. In Section 3 we exemplify the gauge covariant ap-
proach with some nontrivial examples connected with the Kepler/Coulomb
(KC) potential. In Section 4 we discuss the special role of the KY tensors in
generating higher order symmetries. In the next Section we describe the re-
lationship between conformal symmetries and the corresponding quantum
operators in connection with quantum gravitational anomalies. Finally, the
last Section is devoted to conclusions.

2. Symmetries and conserved quantities

Let us consider the Hamilton function describing the geodesic motion in a
curved n-dimensional (pseudo-)Riemannian space M with the metric g

H =
1
2

gijpipj . (1)

A conserved quantity of motion can be expanded as a power series in mo-
menta:

K = K0 +
p∑

k=1

1
k!

Ki1···ik(x)pi1 · · · pik , (2)

having a vanishing Poisson bracket with the Hamiltonian:

{K,H} =
∂K

∂xi

∂H

∂pi
− ∂K

∂pi

∂H

∂xi
= 0 . (3)

For the conservation of K its terms must satisfy

K(i1···ik;i) = 0 , (4)
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where a semicolon denotes the covariant differentiation corresponding to the
Levi-Civita connection ∇ and round brackets denotes full symmetrization
over the indices enclosed. A symmetric tensor Ki1···ik satisfying (4) is called
a SK tensor of rank k. Let us note that for any geodesic γ with tangent
vector ẋi = pi

QK = Ki1···ik ẋi1 · · · ẋik , (5)

is constant along γ.

If a gauge field Fij is present, the usual prescription is to replace the Hamil-
tonian (1) by

H =
1
2

gij(pi −Ai)(pj −Aj) , (6)

where Ai are the potential 1-forms corresponding to the gauge field Fij

Fij = Aj;i −Ai;j . (7)

For the conserved quantities of motion we consider the polynomials (2) in
the variables (pi −Ai) and work out the Poisson bracket (3).

The disadvantage of this approach is that the canonical momenta pi and
implicitly the Hamilton equations of motion are not manifestly gauge co-
variant. This drawback can be removed using van Holten’s receipt [3] by
introducing the gauge invariant momenta:

Πi = pi −Ai . (8)

The Hamiltonian (6) becomes

H =
1
2

gijΠiΠj + V (x) , (9)

where, for completeness, a scalar potential V (x) was included.

The equations of motion are derived using the Poisson bracket

{P,Q} =
∂P

∂xi

∂Q

∂Πi
− ∂P

∂Πi

∂Q

∂xi
+ qFij

∂P

∂Πi

∂Q

∂Πj
. (10)

Now the fundamental Poisson brackets are

{xi, xj} = 0 , {xi, Πj} = δi
j , {Πi, Πj} = Fij , (11)

showing that the momenta Πi are not canonical.
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Searching for conserved quantities (2) expanded rather into powers of the
gauge invariant momenta Πi we get the following series of constraints

KiV,i = 0 , (12a)

K ,i
0 + F i

j Kj = KijV,j . (12b)

K(i1···il;il+1) + F
(il+1

j Ki1···il)j =
1

(l + 1)
Ki1···il+1jV,j ,

for l = 1 , · · · (p− 2) , (12c)

K(i1···ip−1;ip) + F
(ip

j Ki1···ip−1)j = 0 , (12d)

K(i1···ip;ip+1) = 0 . (12e)

Examining the above hierarchy of constraints some remarks are in order. In
the presence of the gauge field Fij only the last equation (12e) corresponds
to a SK tensor (4), while the rest of the equations mixes up the terms
of K with the gauge field strength and potential V (x). Also it is worth
mentioning that equations (12) separate into two groups: one involves the
terms of K of odd degree in the momenta Πi and the other involves only
terms of K of even degree in the momenta [4].
Several applications using van Holten’s covariant framework [3] are given in
[5, 6, 7, 8]. In what follows we shall exemplify the gauge covariant approach
with a few simple but not trivial examples.

3. Explicit examples

Let us illustrate these general considerations by some nontrivial examples.
In what follows we consider M to be a 3-dimensional Euclidean space E3

and in these circumstances it is more convenient to get rid of a difference
between covariant and contravariant indices. The KC potential will be the
basis of our examples adding different other electromagnetic field. The
hidden symmetries which will be found involve SK tensors of rank 2.

3.1. Coulomb potential
We investigate the constants of motion in a KC potential superposing dif-
ferent types of electric and magnetic fields. To put in a concrete form, we
consider the Hamiltonian for the motion of a point charge q of mass M in
the Coulomb potential produced by a charge Q

H =
M

2
ṙ2 + q

Q

r
. (13)

The most general SK tensor of rank 2 in a 3-dimensional Euclidean space
turns out to be [9]:

Kij = εkm(iεj)lnAmnxkxl + (Bl(iεj)kl + λ(iδj)k − δijλk)xk + Cij , (14)
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where Amn, Bli and Cij are constant tensors. However, for the KC problem
it proved that the following form is adequate [9]:

Kij = 2δijn · r− (nirj + njni) , (15)

written in spherical coordinates with n an arbitrary constant vector.
Corresponding to this SK tensor the non relativistic KC problem admits
the Runge-Lenz vector constant of motion

K = Π× L + MqQ
r
r

, (16)

where
L = r×Π , (17)

is the angular momentum.

3.2. Constant electric field
The next more involved example consists of an electric charge q moving in
the Coulomb potential in the presence of a constant electric field E. The
corresponding Hamiltonian is:

H =
1

2M
Π2 + q

Q

r
− qE · r , (18)

with Π = M ṙ in spherical coordinates of E3.
We are looking for a constant of motion for the system governed by the
Hamiltonian (18) of the form

K = K0 + KiΠi +
1
2

KijΠiΠj . (19)

As we observed in Section 2, the last equation of the system (12) for p = 2
is satisfied by a SK tensor of rank 2. Again it is adequate to choose for the
SK tensor of rank 2 the simple form (15).
In the presence of a constant electric field E it proves convenient to choose
n along E and we start to solve the hierarchy of constraint (12) with a
solution of equation (12e) of the form (15) with n = E. Using this form for
Kij and the derivative of the potential V corresponding to the Hamiltonian
(18)

V,i = −qQ

r3
ri − qEi , (20)

we get from (12b) after a straightforward calculation

K0 =
MqQ

r
E · r− Mq

2
E · [r× (r×E)] . (21)
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Concerning equation (12a) in conjunction with (20), it is automatically
satisfied with a vector K of the form

K = r×E , (22)

modulo an arbitrary constant factor. This vector K contribute to a con-
served quantity with a term proportional to the angular momentum L along
the direction of the electric field E.
In conclusion, when a uniform constant electric field is present, the KC
system admits two constants of motion L · E and C · E where C is a
generalization of the Runge-Lenz vector (16):

C = K− Mq

2
r× (r×E) . (23)

3.3. Spherically symmetric magnetic field
Another configuration which admits a hidden symmetry is the superposi-
tion of an external spherically symmetric magnetic field

B = f(r)r , (24)

over the Coulomb potential acting on a electric charge q. This configuration
is quite similar to the Dirac charge-monopole system.
For the beginning the scalar function f(r) is not fixed, its form will be
determined from the hierarchy of constraints (12). For Kij we use again
the form (15) and Fij in this case is

Fij = εijkBk = εijkrkf(r) . (25)

From (12d) for l = 1 we have

K(i,j) = −qf(r)[(n× r)(irj)] , (26)

with n an arbitrary unit constant vector. It is easy to get for the vector K
the solution

Ki = q

[∫
rf(r)dr

]
(n× r)i , (27)

and equation (12a) is obviously satisfied.
For K0, equation (12b) can be solely solved making choice of a definite
form for the function f(r)

f(r) =
g

r5/2
, (28)

with g a constant connected with the strength of the magnetic field. For
this function f(r) the energy of the magnetic field diverges at r = 0 and
r → ∞. Of course such a special magnetic field (24) could be prepared
only in a finite region of space and all present considerations are limited to
this space domain.
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With this special form of the function f(r) we get

K0 =
[
MqQ

r
− 2g2q2

r

]
(n · r) , (29)

and
Ki = − 2gq

r1/2
(r× n)i . (30)

Collecting the terms K0,Ki,Kij the constant of motion (19) becomes

K = n ·
(
K +

2gq

r1/2
L− 2g2q2 r

r

)
, (31)

with n an arbitrary constant unit vector and K,L given by (16), (17)
respectively. The angular momentum L [3] is not separately conserved,
entering the constant of motion (31).

3.4. Magnetic field along a fixed direction
The last example consists in a magnetic field directed along a fixed unit
vector n

B = B(r · n)n , (32)

where, for the beginning, B(r · n) is an arbitrary function.
Again we are looking for a constant of motion of the form (19) with the SK
tensor of rank 2 (15). Equation (12c) for l = 1 reads

K(i,j) = −qB(r× n)(inj) . (33)

Ki, solution of this equation, must satisfy also equation (12a) and after
some straightforward calculations we get

Ki = q

[∫
rB(r · n)d(r · n)

]
(r× n)i . (34)

Equation (12b) for K0 proves to be solvable only for a particular form of
the magnetic field

B =
α√

αr · n + β
n , (35)

with α and β two arbitrary constants.
Finally we get for K0 and K1i

K0 =
MqQ

r
(r · n) + αq2(r× n)2 , (36)

Ki = −2q
√

αr · n + β (r× n)i . (37)
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The final form of the conserved quantity in this case is:

K = n ·
[
K + 2q

√
αr · n + β L

]
+ αq2(r× n)2 . (38)

As in the previous example the angular momentum L is forming part of
the constant of motion K (38).

4. Killing-Yano tensors

Killing-Yano (KY) tensors are a different generalization of Killing vectors
which can be studied on a manifold. They were introduced by Yano [10]
from a purely mathematical perspective and later on it turned out they have
many interesting properties relevant to physics. For the first time Floyd
[11] and Penrose [12] showed that the SK tensor of the four-dimensional
space-time admits a square root in terms of KY tensors. After that Carter
and McLenaghan [13] were able to construct from KY tensors Dirac type
operators which commute with the standard Dirac operator. Gibbons et
al [14] stressed the role of the KY tensors of rank 2 in general relativity
and in dynamics of spin 1

2 fermions in spinning particle models. In recent
years the KY tensors are related to a multitude of different topics such
supersymmetries, index theorems, supergravity theories, and so on [15].
A KY tensor Yi1···ip is antisymmetric satisfying the following equation:

Yi1···ip−1(ip;j) = 0 . (39)

The first connection with the symmetry properties of the geodesic motion
is the observation that along every geodesic γ in M, Yi1···ip−1j ẋ

j is parallel.

These two generalizations SK and KY of the Killing vectors could be re-
lated. Let Yi1···ip be a KY tensor, then the symmetric tensor field

Kij = Yii2···ipY
i2···ip

j , (40)

is a SK tensor and it sometimes refers to this SK tensor as the associated
tensor with Yi1···ip . That is the case of the Kerr metric [11, 12] or the
Euclidean Taub-NUT space [16, 17]. However, the converse statement is
not true in general: not all SK tensors of rank 2 are associated with a KY
tensor. A counterexample is the generalized Taub-NUT space [18] which
admit SK tensors but no KY tensors [19].
Having in mind the special role of null geodesic for the motion of massless
particles, it is convenient to look for conformal generalization of KY ten-
sor. Let us mention also that recently a lot of interest focuses on higher
dimensional black holes. It was demonstrated the remarkable role of the
conformal Killing-Yano (CKY) tensors in the study of the properties of
such black holes (see e. g. [20, 21, 22] and the cites contained therein). In
what follows we limit ourselves to CKY tensors of rank 2 which satisfy [23]

Yij;k + Ykj;i =
2

n− 1

(
gkiY

l
j;l + gj(iY

l
k) ;l

)
. (41)
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There is also a conformal generalization of the SK tensors, namely a sym-
metric tensor Ki1···ip = K(i1···ip) is called a conformal Killing (CSK) tensor
if it obeys the equation

K(i1···ip;j) = gj(i1K̃i2···ip) , (42)

where the tensor K̃ is determined by tracing the both sides of equation (42).
Let us note that in the case of CSK tensors, the quantity (5) is constant
only for null geodesics γ. There is also a similar relation between CKY and
CSK tensors as in equation (40). Namely if Yij is a CKY tensor

Kij = Y k
i Ykj , (43)

is a CSK tensor [23].

5. Quantum gravitational anomalies

In order to find the necessary conditions for the existence of constants of
motion in a first-quantize system we replace momenta by derivatives and
look for operators commuting with the Hamiltonian:

H = ¤ = ∇ig
ij∇j = ∇i∇i , (44)

corresponding to a free scalar particle and the covariant Laplacian is acting
on scalars.
Many times the classical conserved quantities associated with SK tensors do
not generally transfer to the quantized systems producing so-called quan-
tum anomalies [24]. In what follows we shall analyze the quantum anoma-
lies in the case of SK and CSK tensors and, to make things more specific,
we confine ourselves to the case of tensors of rank 1 and 2.
For the beginning let us consider the conserved operator corresponding to
a conformal Killing vector Ki in the quantized system

QV = Ki∇i . (45)

In order to identify a quantum gravitational anomaly we shall evaluate the
commutator [¤,QV ]Φ for Φ ∈ C∞(M), solutions of the Klein-Gordon equa-
tion with the Klein-Gordon operator (44). A straightforward calculation
gives

[H,QV ] =
2− n

n
K ;ki

k ∇i +
2
n

Kk
;k¤ . (46)

As it is expected, in the case of ordinary Killing vectors the r. h. s. of this
commutator vanishes and there are no quantum gravitational anomalies.
But for conformal Killing vectors, we confront with a quite different situa-
tion. Even if we evaluate the r. h. s. of (46) on solutions of the massless
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Klein-Gordon equation, ¤Φ(x) = 0, the term K ;ki
k ∇i survives. It is pos-

sible to find some particular spaces in which the r. h. s. of (46) vanishes,
but in general the system is affected by quantum gravitational anomalies.
In the case of SK and CSK tensors of rank 2 the quantum analog of the
classical conserved quantity (2) is

QT = ∇iK
ij∇j , (47)

where Kij is a SK (4) or a CSK (42) tensor.
Now the evaluation of the commutator between H and the quantum oper-
ator (47) is more involved than in case of Killing vectors and the result of
this tedious evaluation is [25, 26]:

[¤,QT ] = 2
(
∇(kKij)

)
∇k∇i∇j

+3∇m

(
∇(kKmj)

)
∇j∇k (48)

+
{
−4

3
∇k

(
R [k

m Kj]m
)

+ ∇k

(
1
2
gml(∇k∇(mK lj) −∇j∇(mKkl)) +∇i∇(kKij)

)}
∇j .

We mention that the last term is missing in the corresponding equation in
[24]. Note also that the terms are arranged into groups with three, two and
just one derivatives and consequently it is impossible to have compensations
between them.
However in the case of SK tensors all the symmetrized derivatives vanish
and we end up with a simpler result

[¤,QT ] = −4
3
∇k(R [k

m Kj]m)∇j . (49)

Since the r. h. s. does not vanish identically, SK tensors exhibit quantum
anomalies, i. e. the classical conservation law does not transfer to the
quantum level.
Although in general SK tensors do not give quantum mechanical symme-
tries, there are a few notable conditions for which the r. h. s. of (49)
does vanish. The simplest case in which this happens is obviously when
the space is Ricci flat. A slightly more general case is when the space is
Einstein, i. e. Rij ∝ gij (that is, if the vacuum Einstein equations are
fulfilled). In this case we get that the r. h. s. of the commutator involves
K [ij] and consequently vanishes since SK tensors are symmetric. A more
interesting and quite unexpected case is represented by SK tensors associ-
ated to KY tensors of rank 2 as in (40) [24] a situation which occurs for
some spaces [11, 12, 16, 17].
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For CSK tensors the existence of some favorable conditions which could
prevent the appearance of quantum anomalies is quite impossible. In the
case of CSK tensors we could not simplify any more the commutator (48)
since for them the symmetrized derivatives do not vanish. Even if we
evaluate the commutator for CSK tensors associated with CKY tensors we
do not obtain a cancellation of anomalies [26]. Therefore we are not able
to find any favorable circumstances on the CSK tensors in order to achieve
a conserved quantum operator.

6. Concluding comments

The (C)SK and (C)KY tensors are related to a multitude of different top-
ics such as classical integrability of systems together with their quantiza-
tion, supergravity, string theories, hidden symmetries in higher dimensional
black-holes space-times, etc.
To conclude let us discuss shortly some problems that deserve a further
attention. An obvious extension of the gauge covariant approach to hidden
symmetries is represented by the non-Abelian dynamics using the appropri-
ate Poisson brackets [3, 5]. We worked out some examples in an Euclidean
3-dimensional space and restricted to SK tensors of rank 2. More elaborate
examples working in a N -dimensional curved space and involving higher
ranks of SK tensors [27] will be presented elsewhere [28].
The concept of generalized (C)KY symmetry in the presence of a skew-
symmetric torsion is more widely applicable and may become very powerful
[29].
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