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Abstract

In this report we discuss the organization of different levels of nature
and the corresponding space-time structures by the consideration of
a particular problem of time irreversibility. The fundamental time
irreversibility problem consists in the following: how to reconcile the
time-reversible microscopic dynamics and the irreversible macroscopic
one.

The recently proposed functional formulation of mechanics is aimed
to solve this problem. The basic concept of this formulation is not a
material point and a trajectory, like in the traditional formulation of
mechanics, but a probability density function. Even if we deal with
a single particle (not an ensemble of particles), we describe its state
as a probability density function. We justify this approach using the
measurement theory.

A particular problem in the framework of the irreversibility problem
is the derivation of the Boltzmann kinetic equation from the equations
of microscopic dynamics. We propose a procedure for obtaining the
Boltzmann equation from the Liouville equation based on the BBGKY
hierarchy, the recently proposed functional formulation of classical
mechanics, and the distinguishing between two scales of space-time,
i.e., macro- and microscale. The notion of a space-time structure is
introduced. It takes into account not only the space-time itself (i.e.,
a pseudo-Riemannian manifold), but also a characteristic length and
time. The space-time structures forms a hierarchy in sense that the
initial values for the processes on the microscopic space-time structure
(interactions of the particles) are assigned from the processes on the
macroscopic space-time structure (kinetic phenomena).
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1. Introduction. Irreversibility problem

The laws of physics are formulated in terms of differential equations. Every
physical law is a mathematical model of the corresponding level of nature.
For the last centuries theoretical and mathematical physics made the great
success in the revelation of these laws as well as in the consequent technical
progress. However, in order to have a holistic picture of the world, we
should not only describe its separate levels, but also understand, how these
descriptions relate to each other.
One conception is reductionism. It claims that the properties of a system
can, in principle, be derived from the properties of its parts. For example,
the dynamics of a gas can be derived from the dynamics of its atoms or
molecules. But it seems that the reductionism does not work: a system as
a whole has some properties which cannot be understood from the studying
of its parts. For example, the temperature characterise the gas a whole and
cannot be understood from the level of separate atoms or molecules.
Another property of this type is the property of irreversibility of macro-
scopic systems in time. Laws of the microscopic motion, given by the
Newton, Hamilton, Schrödinger equations, quantum field theory equations
etc., are time-symmetric, i.e., all physical processes can go to both direc-
tions of time. On the contrary, the laws of macroscopic motion, given by
the Boltzmann, Navier-Stocks, other kinetic and hydrodynamic equations,
the second law of thermodynamics etc., have a distinguished direction of
time.
Let us consider this problem more mathematically. The Newtonian formu-
lation of classical mechanics based on the notions of point and trajectory
in the phase space. The fundamental law of dynamics in this formulation
is given by the Hamilton system of equations. Consider the system of N
identical particles. Then the Hamilton equations have the following form:

q̇i =
∂H

∂pi
, ṗi =

∂H

∂qi
, i = 1, 2, . . . , N. (1)

Here qi = qi(t) ∈ G ⊂ R3 is the position of the i-th particle at time t,
pi = pi(t) ∈ R3 is the momentum of the i-th particle at time t, H =
H(x1, . . . , xN ) is a Hamiltonian, xi = (qi, pi). The following proposition
holds:

Proposition 1 Let (q(t), p(t)) be a solution of the Hamiltonian system
of equations (1), q(t) = (q1(t), . . . , qN (t)), p(t) = (p1(t), . . . , pN (t)). Let
H(q, p) = H(q,−p). Then (q̃(t), p̃(t)) = (q(−t),−p(−t)) is also a solution
of the Hamiltonian system.

The proof is straightforward. This proposition is a mathematical expression
of the time-reversibility of the classical dynamics of particles, since the most
of the fundamental Hamiltonians satisfy the condition H(q, p) = H(q,−p).

We suppose that G is a bounded region in R3 with the volume V and a
smooth boundary ∂G. We will consider the Hamiltonians of the form
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H =
N∑

i=1

p2
i

2m
+

N∑

i,j=1
i>j

Φ
( |qi − qj |

µ

)
+

N∑

i=1

U(qi). (2)

Here Φ(r) is an interaction potential of the particles, U(q) is an external
potential, m > 0 is the mass of a particle. We assume that Φ(r) is con-
tinuously differentiable, monotonically decrease (which corresponds to the
repelling force) on (0,+∞), Φ(r) → 0 as r → +∞, Φ(r) → +∞ as r → 0.
U(q) is continuously differentiable in G, U(q) → +∞ as q → ∂G (i.e.,
the external potential does not allow the particles to leave the domain G).
µ > 0 is a dimensionless scale parameter which we will use later.
Consider now a gas from the point of view of kinetic theory. In this case the
gas is described in terms of a single-particle density function f(q, p, t). Let
it be normalized on the volume V (i.e., f(q, p, t)/V is a probability density
function), q ∈ G, p ∈ R3. One of the fundamental equations of the kinetic
theory is the Boltzmann equation:

∂f

∂t
= − p

m

∂f

∂q
+

∂U

∂q

∂f

∂p
+ St f, (3)

St f = n

∫

R2×R3

|p− p1|
m

[f(q, p′, t)f(q, p′1, t)− f(q, p, t)f(q, p1, t)]dσdp1,

where n > 0 is the concentration of the particles (the number of particles
in the unit of volume), dσ = rdrdϕ. Also p′ and p′1 are the momenta that
will have two particles long after the collision, if they had the momenta p
and p1 long before the collision with the impact parameter of the collision
(scattering) r and the polar angle ϕ (so, (r, ϕ) ∈ R2 are polar coordinates
on the plane perpendicular to the relative velocity vector (p − p1)/m).
Thus, p′ = p′(p, p1, r, ϕ), p′1 = p′1(p, p1, r, ϕ), the dependence is defined by
the two-particle Hamiltonian. The expression St f is called the collision
integral.
This is an important nonlinear equation which describes the relaxation of
the function f to the Maxwell distribution. One of the properties which
can be easily proved is the so-called Boltzmann H-theorem:

Proposition 2 (H-theorem) Let f(q,p,t) be a solution of the Boltzmann
equation (3) and the quantity H(t) =

∫
ΩV

f(q, p, t) ln f(q, p, t) dqdp, ΩV =
G× R3, be well-defined (i.e., the integral converges). Then dH

dt ≥ 0.

This proposition states the entropy growth (the quantity S(t) = −H(t) can
be regarded as the entropy of the gas) and, hence, the irreversible character
of the gas dynamics.
Thus, we have obtained two contradictory conclusions: if we consider the
gas as a whole (in terms of the single-particle distribution and the Boltz-
mann equation), the dynamics is irreversible in time, while if we consider
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the gas as a system of a finite number N of particles (in terms of the point
in the N -particles’ phase space ΩN

V and the Hamiltonian equations), the
dynamics is reversible.

It seems that the reductionism does not work, the time irreversibility is
a property of macrosystems which cannot be reduced to the microscopic
level. So, the problem about another type of relation between the different
levels of description arises.

2. Functional formulation of classical mechanics and mea-
surement theory

Recently, a new formulation of classical mechanics called functional for-
mulation was proposed by I. V. Volovich [1] and is aimed to solve the ir-
reversibility problem. This formulation is based not on the notions of a
material point and a trajectory, but on the notion of a probability density
function for a finite number of particles. Consider again a system of N
identical particles. In the functional formulation the state of this system
at time t is given by a probability density function ρ(x1, . . . , xN , t). The
fundamental law of motion in this formulation is given by the Liouville
equation

∂ρ

∂t
= {H, ρ},

where {·, ·} are the Poisson brackets.

Formally, the Liouville equation is time-symmetric. But the solutions of
the Liouville equation have the property of delocalization. For example,
if we have one particle in a box with hard walls (i.e., N = 1, U(q) = 0
if q ∈ G, U(q) = +∞ if q /∈ G), then the spatial probability distribution
σ(q, t) =

∫
R ρ(q, p, t)dp tends to the uniform distribution in G. So, initially

spatially well localized particle diffuses and fill the whole of the available
volume. This delocalization property can be regarded as the irreversibility.
So, the point of the functional formulation of mechanics is introducing the
irreversibility on the microscopic level by the assignment of the holistic
statistical properties to a single particle.

The argument of considering the probability density function rather than
the material point as a fundamental object of mechanics is given by the
measurement theory. Since the real (more precisely, irrational) numbers
are unobservable, the notions of a material point and a trajectory, based
on the concept of a real number, have not a direct physical meaning. The
result of every measurement is a rational number (it is worthwhile to note
that the justification of the p-adic and adelic mathematical physics also
starts from this fact [2]). Moreover, every measurement has an error. So,
we never know a state of the system as a point in the phase space. Every
experimenter knows a state as a rational number and an error represented
as a confidence interval and a confidence probability. This situation is
naturally described by a probability density function.



Hierarchy of space-time structures, measurements,... 307

For example, let an experimenter performs some measurements of some
observable X and represent the results of the measurements in the form

x ∈ (x0 −∆0,997, x0 + ∆0,997), the confidence probability is 0, 997.

Here x is an “actual” value of X, i.e., he do not know the value of X, but we
know that it lies in the confidence interval (x0 −∆0,997, x0 + ∆0,997) with
the probability 0,997. Alternatively, he can represent the result of the same
measurements in the same form with some another confidence probability γ
and the corresponding ∆γ (of course, ∆γ increases as γ increases). In fact,
the experimenter deals with a probability density function. For example,
under certain conditions this probability density function may have the
form

ρ(x) =
1√
2πσ

e−
(x−x0)2

2σ2 ,

where σ = ∆0,997/3 = ∆0,683 [3].

Thus, the experimenter knows the state of the system not as a point in a
phase space, but as a family of confidence intervals with the corresponding
confidence probabilities, or, equivalently, as a probability distribution in
the phase space. One can say that since every measurement has an error
and the theory of measurement error is based on mathematical statistics
and probability theory, a description of the state of any classical physical
system in terms of probability distributions is more natural and direct from
the experimental point of view.

Assigning a certain values for the physical quantities, as it is accepted in
the traditional view on mechanics, is an abstraction and idealization. As
every idealization, it works in some situations, but in other situations it
does not. Of course, we can not neglect the measurement errors, when we
deal with large times, because the errors grow with the time due to the
discussed delocalization effect. Such large time asymptotics as thermaliza-
tion or recurrence (almost periodicity) are often discussed with the relation
to the irreversibility problem. So, if we examine the time irreversibility
problem, we must consider mechanics in its functional, not the traditional,
formulation.

It should be noted that the use of a real-valued probability density func-
tion does not contradict to the rational-valued measurement results. The
probability density function is not a directly observable value, rather it is
constructed from the directly observable results of measurements. See [4]
for the detailed description of the construction of the probability density
function starting from the measurement results. See also [5] for the dis-
cussing the functional dynamics of a system under often measurements.
Since the probability density function is not directly observable, it can be
real-valued. Like the concept of a material point, the concept of a proba-
bility density function is also a kind of idealization. But this idealization
works in a more general case.
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3. Derivation of the Boltzmann equation and the hierarchy
of space-time structures

One of the problems of the framework of the irreversibility problem is the
derivation of the Boltzmann equation from the Liouville equation. Two
different derivations have been got by Bogolyubov [6] and Lanford [7]. The
main drawbacks of the Bogolyubov’s derivation are the number of the addi-
tional assumptions and the divergencies in the high order corrections to the
Boltzmann equation [8]. The main drawback of the Lanford’s derivation
is a small time on which the validity of the Boltzmann equation is proved.
This time appears to be approximately 1/5 of the mean free time [9]. On
the contrary, the Boltzmann equation is aimed to explain the dynamics of
the density function and its convergence to the Maxwell distribution on the
times much greater than the mean free path. In this section we present an
alternative derivation of the Boltzmann equation from the Liouville equa-
tion.

Both Bogolyubov and Lanford start with the Cauchy problem for the Li-
ouville equation





∂ρ

∂t
= {H, ρ},

ρ(x1, . . . , xN , 0) = ρ0(x1, . . . , xN ).
(4)

As we have discussed in the previous section, we construct the initial prob-
ability density function ρ0 from the results of measurements of each parti-
cle’s position and momentum. But practically, when we consider the kinetic
events, we do not measure the position and momentum of each of N (which
can be of order Avogadro number 1023) particles. In fact, there are two
space-time scales. The first one is the scale of the particles interaction ra-
dius r0 and the particle interaction time r0/ū (a microscale). Here ū is the
mean velocity of the particles. The second one is the scale of the mean free
path l and the mean free time l/ū (a macroscale or a scale of kinetic phe-
nomena). The Boltzmann equation is valid if r0 ¿ l. We put µ = r0

l → 0.
This parameter in the Hamiltonian (see (2)) means that particles interact
on the scale much smaller than the considering scale of l.

In practice, when we consider the kinetic events, we have a measuring
instrument which can capture the changes of the functions only on the
macroscale. We can construct the one-particle probability density function
ρ0
1(x1) =

∫
ΩN−1

V
ρ0dx2 . . . dxN using this instrument (denote also f0

1 = V ρ0
1).

But we cannot construct the function ρ0, because this function incorporates
the information about the correlations of the particles on the distances of
order r0 which cannot be captured by our instrument.

So, the Cauchy problem (4) has not a direct physical meaning. Instead of
the Cauchy problem we start with the following problem:
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



∂f

∂t
= {H, f},

S
(2)
−∆t[f2(x1, x2, t−∆t)− f1(x1, t−∆t)f1(x2, t−∆t)] → 0

(as µ → 0, N →∞, Nµ2 = const, and ∆t → 0,
∆t

µ
= ∆τ →∞),

f1(x1, 0) = f0
1 (x1),∫

ΩN
V

Hf dx1 . . . dxN < ∞,

f(x1, . . . , xN , t) = f(xi(1), . . . , xi(N), t), (i(1), . . . , i(N)) = P (1, . . . , N),
(5)

Here f(x1, . . . , xN , t) = V Nρ(x1, . . . , xN , t) (of course, f depends also on µ,
since µ is a parameter in the Hamiltonian, the initial function f0

1 also may
depend on µ);

fs(x1, t) = V N−s

∫

ΩN−s
V

f(x1, . . . , xN , t) dxs+1 . . . dxN ,

s = 1, 2; S
(2)
t is the two-particle Hamiltonian flow, i.e., S

(2)
t ϕ(x1, x2) =

ϕ(x1t, x2t), where (x1t, x2t) is the phase point (x1, x2) moved along the flow
on t; P (1, . . . , N) is a permutation of the numbers 1, . . . , N .

Theorem 1 Let the function f(x1, . . . , xN , t) satisfy the problem (5). Let
Φ(r) be monotonically decreasing function and lim

r→∞ rγΦ(r) = C 6= 0, γ > 2.

Then the function f1(x1, t) satisfies the Boltzmann equation (3) with the
initial function f0

1 in the limit µ → 0, N → ∞, Nµ2 = const = nV (i.e.,
∂f1(x,t)

∂t converges to the right-hand side of (3) with f1 instead of f in every
point x ∈ ΩV and t ∈ R).

This is the main result of this report. The limit µ → 0, N → ∞, Nµ2 →
const is called the Grad or Boltzmann–Grad limit [10] and was used by
Lanford. Bogolyubov used the thermodynamic limit N → ∞, V → ∞,
N
V = n = const. There is also a derivation of Bogolyubov–Boltzmann-type
equation for a finite number of particles (for example, for two particles), i.e.,
without the limit N →∞, based on the functional approach to mechanics
[11].
Let us discuss the formulation of problem (5). The third condition is the
initial value for the single-particle function f1. The fourth condition means
the finiteness of energy, the fifth condition means the symmetry of the
density function with respect to permutations (i.e., the particles are indis-
tinguishable).
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The most interesting and crucial is the second condition. The knowledge
of the initial single-particle function f0

1 (x1) is not sufficient to get a unique
solution for the single-particle function f1(x1, t). Since, as we said above,
the condition of the form f(x1, . . . , xN , 0) = f0(x1, . . . , xN ) has not a direct
physical meaning, we must have some additional condition.
As we said above, there are two scales of space-time in this consideration:
the microscale, related to the interaction of particles, and the macroscale,
related to the kinetic phenomena. The two-particle function f2 relates to
the microscopic scale, because it incorporates the information about the
pairwise correlations of the particles on the distances of order r0. The
single-particle function f1 relates to the macroscopic scale, since it does
not incorporate the information about particles’ interaction and the kinetic
theory is expressed in terms of this function. The second condition in (5)
means that the initial value for the microscopic function f2 are assigned by
the macroscopic function f1. So, instead of the specification of the initial
microscopic function f0, we specify only the initial macroscopic function
f0
1 and impose a condition on the microscopic function: in a certain sense

it is subordinated to the macroscopic one (in sense that its initial values
are assigned from the macroscale).
Traditionally space-time is defined as a manifold M with a pseudo-Rieman-
nian metrics g. In the simplest case this is R4 with the usual Lorentz
metrics η (the Minkowski space). However, when we speak about a space-
time, we keep in mind some characteristic length and time. For example, in
continuum mechanics the density is defined as dm(r)

dV = lim
∆V→0

∆m(r)
∆V , where

∆m(r) is the mass of the volume ∆V near the point r ∈ R3. In spite of
the mathematical limit ∆V → 0, i.e., the limit of arbitrarily small volumes,
we keep in mind that ∆V is a macroscopic volume, i.e., it contains a large
number of atoms or molecules (otherwise the definition is not valid).
So, always when we deal with some space-time, we keep in mind not only
the space-time (R4, η) itself, but also a characteristic length L, which tell us
about the averaging scale (the characteristic time is given by L/u, where u is
the mean velocity). In our example we average over the molecular structure
of the medium. Exactly this allows us to perform the limit ∆V → 0. The
triple (R4, η, L) we will call the space-time structure.
In our problem of the derivation of the Boltzmann equation we also ac-
tually deal with two distinct space-time structures. The first one is the
space-time structure (G×R, η, l) of macroscopic (kinetic) phenomena with
the coordinates (q, t) and the characteristic length l (the mean free path).
The second one is the space-time (G

µ ×R, η, r0) of microscopic phenomena,
like particle interactions, with the coordinates (ξ, τ) and the characteristic
length l (the particle interaction radius). These space-time structures are
related to each other by the scale transformation

ξ =
q

µ
, τ =

t

µ
, µ =

r0

l
→ 0.
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With such a transformation infinitesimal region of the macroscopic space-
time may correspond to the infinitely large region of the microscopic space-
time. Exactly this situation we can see in the second condition in (5):
∆t → 0, but ∆τ = ∆t

µ →∞. Of course, these two scales meet each other in
the collision integral of the Boltzmann equation: a collision is considered
as a point and momentary act on the macroscale, but it takes place on the
infinite space during the infinite time on the microscale.
So, one can say about a kind of hierarchy of the space-time structures:
the initial values for the processes on the microscopic space-time struc-
ture (interactions of the particles) are assigned from the processes on the
macroscopic space-time structure (kinetic phenomena). Note that the idea
of the hierarchy of times (namely, the microscopic, kinetic and hydrody-
namic times) in a slightly different sense was first proposed by Bogolyubov
[6].

4. Conclusions

In this report we have reviewed the irreversibility problem and the func-
tional formulation of mechanics. This formulation is based on the concept
of a probability density function. The fundamental equation of this formu-
lation is the Liouville equation for the probability density function. The
functional approach to mechanics is justified by the measurement theory.
We have proposed a derivation of the Boltzmann equation from the Liou-
ville equation based on some ideas of the functional formulation and the
measurement theory. The main features of this derivation is distinguishing
of two scales of space-time (micro- and macroscopic or kinetic) and sub-
ordination of the processes on the microscopic space-time structure to the
processes on the macroscopic one.
According to the traditional paradigm of the mathematical physics, the
dynamics is completely determined if we know the law of motion, i.e., a
differential equation, and the initial values for it. However, the initial
values themselves are understood as something external to the equations
of mathematical physics (“As regards the present state of the world. . . the
laws of nature are entirely silent” [12]). We propose another picture: the
initial values for a given level of nature are assigned from the higher level.
So, instead of the reductionism, which claims the reducibility of all levels of
the nature to the most microscopic level, we propose a hierarchical picture
of the world: the lower levels of the nature are subordinated to the higher
ones.
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