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Abstract

We discuss a lattice formulation for supersymmetric Yang-Mills (SYM)
theories with extended supersymmetry, which preserves a part of su-
persymmetry on lattice.

For cases of two dimensions, we can see that lattice models in such a
formulation lead to the target continuum theories with no fine-tuning.
Namely, supersymmetries or some other symmetries not realized on
the lattice are automatically restored in the continuum limit.

Next, we consider a mass deformation to N = (8, 8) SYM and present
its lattice formulation with keeping two supersymmetries. It provides
a nonperturbative framework to investigate IIA matrix string the-
ory. Moreover, since it has fuzzy sphere solutions around which four-
dimensional theory is deconstructed, it will serve a nonperturbative
formulation of four-dimensional N = 4 SYM which requires no fine-
tuning. The rank of the gauge group is not restricted to large N . It
opens a quite interesting possibility to test AdS/CFT correspondence
in a stringy regime where string loop effects cannot be neglected.

Also, for two-dimensional N = (4, 4) SYM, a similar argument is
possible to obtain four-dimensional N = 2 SYM on noncommutative
space.

1. Introduction

In this article, a lattice formulation of supersymmetric gauge theories is
discussed. Lattice formulations mean to reformulate quantum field theo-
ries on discretized space-time, which makes possible computer simulations.
They serve a conventional tool to investigate nonperturbative aspects of
quantum field theories. It is a quite interesting issue to extend such for-
mulations for supersymmetric gauge field theories, since they have been
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an intriguing candidate describing physics beyond the standard model and
they have been found to have a close connection to string theory via matrix
string conjectures [2] and AdS/CFT correspondence [3].
However, there is a notorious difficulty regarding a realization of supersym-
metry on lattice. Typical supersymmetry algebra

{Qα, Qβ} ∼ γµ
αβpµ (1)

contains momenta pµ which act as derivatives to continuous space-time.
Naively, derivative operators are replaced with difference operators upon
discretizing space-time to lattice. Note that the Leibniz rule, which holds
for derivative operators, becomes broken for difference operators by the
quantity O(a). Here, a is a lattice spacing. It generally leads to an explicit
breaking of supersymmetry in a lattice action, which is naively constructed,
by the amount O(a). So, near the continuum limit, i.e. for a being small,
the lattice action Slat can be written as the sum of the corresponding con-
tinuum action Scont and the O(a) quantity S̃:

Slat = Scont + S̃. (2)

As long as at the classical level, S̃ is irrelevant in the continuum limit
(a → 0). But, quantum mechanically, terms in S̃ may receive radiative
corrections which become diverge as a → 0. Note that a plays the role of a
UV cutoff. Suppose a radiative correction from some term in S̃ behaves as
O (

1
a]

)
. Then, the term becomes relevant when

O(a)×O
(

1
a]

)
= O

(
1

a]−1

)
≥ O(a0). (3)

It means that supersymmetry breaking terms in S̃ can be relevant at the
quantum level, and then we cannot reach the desired supersymmetric theory
by sending a → 0 naively in (2). In that case, in order to obtain the
supersymmetric continuum theory, we should such supersymmetry breaking
relevant operators in advance. This procedure is called as fine-tuning.
Since it is quite cumbersome to carry out fine-tuning in actual computer
simulations, lattice models requiring no fine-tuning are practically best.
So, let us focus on cases that lattice actions have “good symmetries” which
protect from generating supersymmetry breaking radiative corrections. For
some theories with extended supersymmetry, it has been found that not all
supersymmetries, but some part of “nilpotent” supersymmetry not gener-
ating translations plays a role of the “good symmetries”. Some of such
examples are
• N = (2, 2) supersymmetric Yang-Mills (SYM) theory in two dimen-

sions [4, 5, 6]

• N = (2, 2) supersymmetric QCD (SQCD) in two dimensions [7, 8, 9,
10, 11]
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• N = (4, 4) SYM in two dimensions [6, 12].

In what follows, we present a new lattice formulation for two-dimensional
N = (8, 8) SYM theory with U(N) gauge group. By using a plane-wave
like mass deformation, flat directions of scalar fields are lifted with preserv-
ing two “nilpotent” supercharges. Next, we discuss a scenario to obtain
four-dimensional N = 4 SYM from a fuzzy S2 background of the two-
dimensional theory. Note that the gauge group of the four-dimensional
theory is U(k) with k being arbitrary. As related work, [13] leads to three-
dimensional N = 8 SYM from a fuzzy S2 background in the BMN matrix
model which is a matrix quantum mechanics [14]. Also, [15] obtains four-
dimensional N = 4 SYM on R × S3 with the gauge group U(∞), i.e. a
planar gauge theory, from the BMN matrix model.

2. Continuum 2d N = (8, 8) SYM

Let us start with the Euclidean action of N = (8, 8) SYM in continuum
two-dimensional space-time:

S0 =
2

g2
2d

∫
d2x tr

[
1
2
F 2

12 +
1
2
(DµXI)2 − 1

4
[XI , XJ ]2

+
1
2
ΨT (D1 + γ2D2)Ψ +

i

2
ΨT γI [XI , Ψ]

]
, (4)

where µ = 1, 2, and I, J = 3, 4, · · · , 10. F12 = ∂1A2 − ∂2A1 + i[A1, A2] is a
gauge field strength, and Dµ = ∂µ+i[Aµ, ·] gauge covariant derivatives. XI

(I = 3, 4, · · · , 10) represent 8 adjoint scalars, and Ψ 16 component adjoint
fermions. γI′ (I ′ = 2, 3, · · · , 10) are imaginary symmetric 16× 16 matrices
satisfying {γI′ , γJ ′} = −2iδI′ J ′1116.

It is convenient to rewrite (4) in the language of topological twist, leading
it to the form of balanced topological field theory [16]. The 8 scalars XI

and the 16 components of Ψ are denoted as

XI =⇒




Xi (i = 3, 4)
BA (A = 1, 2, 3)
C, φ+, φ−,

(5)

Ψ =⇒
{

ψ+µ, ρ+i, χ+A, η+

ψ−µ, ρ−i, χ−A, η−.
(6)

φ± are complex matrices,which are hermitian conjugate with each other.
There are appropriate two supercharges Q

(0)
+ , Q

(0)
− to recast the action to
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the Q
(0)
+ Q

(0)
− exact form 1:

S0 = Q
(0)
+ Q

(0)
− F0, (7)

F0 =
1

g2
2d

∫
d2x tr

[
−iBAΦA − 1

3
εABCBA[BB, BC]

−ψ+µψ−µ − ρ+iρ−i − χ+Aχ−A − 1
4
η+η−

]
(8)

with

Φ1 = 2(−D1X3 −D2X4), Φ2 = 2(−D1X4 + D2X3),

Φ3 = 2(−F12 + i[X3, X4]). (9)

The supercharges Q
(0)
± act as

Q
(0)
± Aµ = ψ±µ, Q

(0)
± ψ±µ = ±iDµφ±, Q

(0)
∓ ψ±µ =

i

2
DµC ∓ H̃µ,

Q
(0)
± H̃µ = [φ±, ψ∓µ]∓ 1

2
[C, ψ±µ]∓ i

2
Dµη± (10)

to gauge multiplets (Aµ, ψ±µ, H̃µ) with H̃µ auxiliary fields,

Q
(0)
± Xi = ρ±i, Q

(0)
± ρ±i = ∓[Xi, φ±], Q

(0)
∓ ρ±i = −1

2
[Xi, C]∓ h̃i,

Q
(0)
± h̃i = [φ±, ρ±i]∓ 1

2
[C, ρ±i]± 1

2
[Xi, η±] (11)

to Xi multiplets (Xi, ρ±i, h̃i) with h̃i auxiliary fields,

Q
(0)
± BA = χ±A, Q

(0)
± χ±A = ±[φ±, BA], Q

(0)
∓ χ±A =

1
2
[C, BA]∓HA,

Q
(0)
± HA = [φ±, χ∓A]± 1

2
[BA, η±]∓ 1

2
[C,χ±A] (12)

to BA multiplets (BA, χ±A,HA) with HA auxiliary fields, and

Q
(0)
± C = η±, Q

(0)
± η± = ±[φ±, C], Q

(0)
∓ η± = ∓[φ+, φ−],

Q
(0)
± φ± = 0, Q

(0)
∓ φ± = ∓η± (13)

to parameter multiplets (C, φ±, η±).

1This is essentially obtained by dimensional reduction from eq. (4.12) in [17].
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From the above transformation property, we find that Q
(0)
± are “nilpotent”

in the sense that

(Q(0)
+ )2 = (infinitesimal gauge transformation by φ+),

(Q(0)
− )2 = (infinitesimal gauge transformation by −φ−),

{Q(0)
+ , Q

(0)
− } = (infinitesimal gauge transformation by C). (14)

Thus, S0 in (8) is manifestly invariant under Q
(0)
± supersymmetries. Note

that F0 is gauge invariant. There is an SU(2)R symmetry as another
manifest symmetry of S0, which is a subgroup of SO(8) internal symmetry
of the theory. Its generators J++, J−−, J0, expressed as

J±± =
∫

d2x

[
ψα
±µ(x)

δ

δψα∓µ(x)
+ χα

±A(x)
δ

δχα∓A(x)
− ηα

±(x)
δ

δηα∓(x)

± 2φα
±(x)

δ

δCα(x)
∓ Cα(x)

δ

δφα∓(x)

]
,

J0 =
∫

d2x

[
ψα

+µ(x)
δ

δψα
+µ(x)

− ψα
−µ(x)

δ

δψα−µ(x)
+ χα

+A(x)
δ

δχα
+A(x)

−χα
−A(x)

δ

δχα−A(x)
+ ηα

+(x)
δ

δηα
+(x)

− ηα
−(x)

δ

δηα−(x)

+ 2φα
+(x)

δ

δφα
+(x)

− 2φα
−(x)

δ

δφα−(x)

]
(15)

with α = 1, · · · , N2 labeling a basis of U(N) gauge group generators, satisfy

[J0, J±±] = ± 2J±±, [J++, J−−] = J0. (16)

J0 is a generator of U(1)R rotation, which is contained in SU(2)R as its Car-
tan subalgebra. Under the SU(2)R rotation, each of (ψ+µ, ψ−µ), (χ+A, χ−A),
and (η+,−η−) transforms as a doublet, and (ψ+, C,−φ−) as a triplet. Note
that a pair of the supercharges (Q(0)

+ , Q
(0)
− ) also forms a doublet. In partic-

ular,

[J±±, Q
(0)
± ] = 0, [J±±, Q

(0)
∓ ] = Q

(0)
± . (17)

Fermions with the suffix ± carry the J0-charge ±1, and φ± carry ±2. Since
F0 is invariant under the SU(2)R, so is

S0 = Q
(0)
+ Q

(0)
− F0 = εγδQ

(0)
γ Q

(0)
δ F0 (γ, δ = ±). (18)
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3. Mass deformation of 2d N = (8, 8) SYM

Next, we introduce mass terms to the theory presented in the previous
section with preserving two supercharges. The Q

(0)
± -transformation (10)-

(13) itself is deformed by a mass parameter M as

Q± = Q
(0)
± + ∆Q± (19)

with nontrivial transformation of ∆Q± given by

∆Q±H̃µ =
M

3
ψ±µ, ∆Q±h̃i =

M

3
ρ±i, ∆Q±HA =

M

3
χ±A,

∆Q±η± =
2M

3
φ±, ∆Q∓η± = ±M

3
C. (20)

Then, the deformed supercharges Q± remain to be “nilpotent” up to gauge
and SU(2)R transformations:

Q2
+ = (infinitesimal gauge transformation by φ+) +

M

3
J++,

Q2
− = (infinitesimal gauge transformation by −φ−)− M

3
J−−,

{Q+, Q−} = (infinitesimal gauge transformation by C)− M

3
J0. (21)

Note that (Q+, Q−) is still a doublet under the SU(2)R.
The mass deformed action we consider is

SM =
(

Q+Q− − M

3

)
FM , FM = F0 + ∆F, (22)

∆F =
1

g2
2d

∫
d2x tr

[
3∑

A=1

aA
2

B2
A +

4∑

i=3

ci

2
X2

i

]
. (23)

When coefficients aA, ci all fall into the interval (−2M
3 , 0), scalars Xi, BA

have positive mass terms. For convenience, let us take

a1 = a2 = a3 = −2M

9
, c3 = c4 = −4M

9
(24)

in the followings. Because the similar relations to (17) hold for the deformed
supercharges, SM is manifestly invariant under the Q± transformations:

Q±SM = 0. (25)
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The explicit form of the action is expressed as

SM = S0 + ∆S, (26)

where

∆S =
1

g2
2d

∫
d2x tr

[
2M2

81
(
B2

A + X2
i

)
+

M2

9

(
C2

4
+ φ+φ−

)

− M

2
C[φ+, φ−] +

2M

3
ψ+µψ−µ +

2M

9
ρ+iρ−i +

4M

9
χ+Aχ−A

− M

6
η+η− −4iM

9
B3 (F12 + i[X3, X4])

]
. (27)

The first line and the third line in (27) give mass terms to scalars and to
fermions, respectively. The second line represents the so called Myers term
[18]. Thanks to these terms, a fuzzy S2 configuration satisfying

[φ+, φ−] =
M

3
C, [C, φ±] = ±2M

3
φ±,

BA = Xi = 0 (28)

gives the minimum of the action (SM = 0) preserving the Q± supersymme-
tries. Note that the contribution of the last line in (27) is not real, but pure
imaginary. Also, we should recognize that the mass-deformed action pre-
serves only two supersymmetries (Q±) but the other 14 supersymmetries
are broken by the deformation. So, the action may look somewhat similar
to the action of PP wave matrix strings preserving 8 supersymmetries [19],
but it is different.

4. Lattice formulation of mass deformed theory

Now we present a lattice formulation for the mass-deformed theory in the
previous section. On the two-dimensional square lattice Z2, gauge fields
are promoted to U(N) group variables:

Aµ(x) =⇒ Uµ(x) = eiaAµ(x), (29)

where Uµ(x) is defined on the link (x, x+ µ̂) which connects the lattice sites
x and x + µ̂. µ̂ is a unit vector along the µ-th direction on the lattice. All
the other fields are put on sites. Lattice fields are dimensionless and they
are related to the continuum counterparts by

(scalars)lat = a(scalars)cont, (fermions)lat = a3/2(fermions)cont,

Qlat
± = a1/2Qcont

± . (30)
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Also, dimensionless coupling constants on the lattice are

g0 = ag2d, M0 = aM. (31)

Q± supersymmetries can be realized on the lattice as

Q±Uµ(x) = iψ±µ(x)Uµ(x),

Q±ψ±µ(x) = iψ±µ(x)ψ±µ(x)± iDµφ±(x),

Q∓ψ±µ(x) =
i

2
{ψ+µ(x), ψ−µ(x)}+

i

2
DµC(x)∓ H̃µ(x),

Q±H̃µ(x) = −1
2

[
ψ∓µ(x), φ±(x) + Uµ(x)φ±(x + µ̂)Uµ(x)†

]

±1
4

[
ψ±µ(x), C(x) + Uµ(x)C(x + µ̂)Uµ(x)†

]

∓ i

2
Dµη±(x)± 1

4
[ψ±µ(x)ψ±µ(x), ψ∓µ(x)]

+
i

2

[
ψ±µ(x), H̃µ(x)

]
+

M0

3
ψ±µ, (32)

where DµA(x) ≡ Uµ(x)A(x+µ̂)Uµ(x)−1−A(x) are forward covariant differ-
ences for adjoint fields A(x). The transformation rules for the other fields
are of the same form as in the continuum with the trivial replacement
M → M0. Then, the “nilpotency” (21) is realized on the lattice.
In order to construct the corresponding lattice action, let us define a lattice
counterpart of ΦA in (9) as

Φ1(x) = 2 (−D1X3(x)−D2X4(x)) ,

Φ2(x) = 2 (−D∗
1X4(x) + D∗

2X3(x)) ,

Φ3(x) =
i(U12(x)− U21(x))

1− ε−2||1− U12(x)||2 + 2i[X3(x), X4(x)]. (33)

Here, D∗
µA(x) ≡ A(x) − Uµ(x − µ̂)−1A(x − µ̂)Uµ(x − µ̂) are backward

covariant differences,

Uµν(x) = Uµ(x)Uν(x + µ̂)Uµ(x + ν̂)−1Uν(x)−1 (34)

are plaquette variables, and we take ||A|| =
√

tr(AA†) as the norm of
an arbitrary matrix A. ε is a positive number chosen as 0 < ε < 2 for
the gauge group U(N). The first term of the RHS of Φ3(x) is a lattice
counterpart of the field strength F12. It is the same as the situation in the
lattice formulation for two-dimensional N = (2, 2) U(N) SYM [6]. Then,
Q±-invariant lattice action is given as

Slat =
(

Q+Q− − M0

3

)
Flat (35)
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with Flat being the same form as FM in (22) under the trivial replacement

1
g2
2d

∫
d2x → 1

g2
0

∑
x

, M → M0, (36)

when the admissibility condition ||1−U12(x)|| < ε is satisfied for ∀x. Oth-
erwise,

Slat = +∞, (37)

i.e. the Boltzmann weight e−Slat vanishes.

4.1. Minimum of the lattice action
Here, we will check that the lattice action has the minimum only at the
pure gauge configuration U12(x) = 11N , which guarantees that the weak
field expansion

Uµ(x) = 1 + iaAµ(x) +
(ia)2

2!
Aµ(x)2 + · · · (38)

is allowed in the continuum limit and that the lattice theory converges to
the desired continuum theory at the classical level.
After integrating out the auxiliary fields, bosonic part of the action Slat
takes the form

S
(B)
lat =

1
g2
0

∑
x

tr
[
2M2

0

81
(
Xi(x)2 + BA(x)2

)

− i
4M0

9
B3(x)

{
−1

2
i(U12(x)− U21(x))

1− 1
ε2
||1− U12(x)||2 + i[X3(x), X4(x)]

}]

+ SPDT (39)

with SPDT representing positive semi-definite terms. We will treat the
terms in the second line in (39), which is pure imaginary, as operators by
employing the reweighting method. Then, for the remaining part of S

(B)
lat

we find that the mass terms in the first line fix the minimum at

Xi(x) = BA(x) = 0, (40)

which is independent of SPDT. At (40), SPDT becomes

SPDT =
1
g2
0

∑
x

tr

[∑
µ

(DµXp(x))2 +
(

i[Xp(x), Xq(x)] +
M0

3
εpqrXr(x)

)2
]

+
1

4g2
0

∑
x

tr
[−(U12(x)− U21(x))2

]
(
1− 1

ε2
||1− U12(x)||2)2 (41)
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with C = 2X8, φ± = X9 ± iX10 and p, q, r = 8, 9, 10. Notice that the
last term representing the gauge kinetic term has the same form as in
the case of two-dimensional N = (2, 2) SYM [6], where the admissibility
condition with 0 < ε < 2 for the gauge group U(N) singles out the minimum
U12(x) = 11N . In order to illustrate it, suppose we forget the admissibility
condition ||1−U12(x)|| < ε for a moment. The action has the minimum at
configurations satisfying

U12(x)2 + U21(x)2 = 2, (42)

namely

U12(x) =



±1

. . .
±1


 (43)

up to gauge transformations with all the combinations of ±1 in the diagonal
entries allowed. Then, we should take into account fluctuations around each
configuration of (43) although only the single configuration U12(x) = 11N
allows the weak field expansion (38) leading to the target continuum theory.
However, if the admissibility condition ||1−U12(x)|| < ε is imposed, all the
configurations of (43) are excluded except U12(x) = 11N . In this way, we
can successfully single out the configuration U12(x) = 11N . Notice that the
standard Wilson’s lattice gauge action has the minimum at

U12(x) + U21(x) = 2 (44)

leading to U12(x) = 11N . “The square” of U12(x) or U21(x) in (42) is a
crucial difference from the Wilson case (44).
Hence, we obtain the single minimum U12(x) = 11N for the action Slat.
The mass deformation preserving Q± is crucial to stabilize flat directions
of scalars as well as to remove degeneracy of gauge fields.

4.2. Absence of doubler modes
In order to check that no doubler appears in the lattice action Slat, let us
set Uµ(x) = 11N and pick up quadratic kinetic terms.
Then, we have the kinetic terms for scalars

S
(2, B)
lat =

1
g2
0

∑
x

tr

[
2M2

0

81

(∑

i

Xi(x)2 +
∑
A

BA(x)2
)

+
∑

µ

{
∆µφ(x)∆µφ̄(x) +

1
4

(∆µC(x))2
}

+
M2

0

9

(
1
4
C(x)2 + φ(x)φ̄(x)

)
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+(∆∗
1B1(x)−∆2B2(x))2 + (∆∗

2B1(x) + ∆1B2(x))2

+(∆1X3(x) + ∆2X4(x))2 + (−∆∗
1X4(x) + ∆∗

2X3(x))2

+
∑

µ

(
∆∗

µB3(x)
)2

]
, (45)

where ∆µ (∆∗
µ) are forward (backward) difference operators:

∆µf(x) = f(x + µ̂)− f(x), ∆∗
µf(x) = f(x)− f(x− µ̂). (46)

Using the relation
∑

x

f(x)∆µg(x) = −
∑

x

(
∆∗

µf(x)
)
g(x), (47)

we find that (45) takes the form of the standard kinetic terms for scalars:

S
(2, B)
lat =

1
g2
0

∑
x

tr

[∑
µ

∆µφ(x)∆µφ̄(x) +
M2

0

9
φ(x)φ̄(x)

+
1
4

{∑
µ

(∆µC(x))2 +
M2

0

9
C(x)2

}

+
∑
A

{∑
µ

(∆µBA(x))2 +
2M2

0

81
BA(x)2

}

+
∑

i

{∑
µ

(∆µXi(x))2 +
2M2

0

81
Xi(x)2

}]
, (48)

indicating that no doubler appears in the bosonic sector.
For fermions, the kinetic terms can be expressed in the form:

S
(2, F )
lat =

1
g2
0

∑
x

tr

[∑
µ

Ψ(0)(x)T Gµ
1
2
(∆µ + ∆∗

µ)Ψ(0)(x)

+
∑

µ

Ψ(0)(x)T Pµ
1
2
(∆µ −∆∗

µ)Ψ(0)(x)

+ Ψ(0)(x)TMΨ(0)(x)
]
. (49)

Here,

(Ψ(0))T =
(

ρ+3, ρ+4, ψ+2, ψ+1,−χ+1, χ+2, χ+3,
1
2
η+,

ρ−3, ρ−4, ψ−2, ψ−1,−χ−1, χ−2, χ−3,
1
2
η−

)
. (50)
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Gµ are 16× 16 imaginary symmetric (anti-hermitian) matrices and Pµ are
16× 16 imaginary anti-symmetric (hermitian) matrices, satisfying

{Gµ, Gν} = −2δµν1116, {Pµ, Pν} = 2δµν1116, {Gµ, Pν} = 0. (51)

The mass matrix is

M =
M0

9

(
md

−md

)
(52)

with
md = diag (1, 1, 3, 3, 2, 2, 2,−3) . (53)

When we move to the momentum space via

Ψ(0)(x) =
∫ π/a

−π/a

d2p

(2π)2
Ψ̃(0)(p)eiap·x, (54)

the kernel

DF =
∑

µ

[
Gµ

1
2
(∆µ + ∆∗

µ) + Pµ
1
2
(∆µ −∆∗

µ)
]

(55)

is expressed as

D̃F (p) =
2∑

µ=1

[
iGµ sin(apµ)− 2Pµ sin2

(apµ

2

)]
. (56)

Using (51), we can easily see

D̃F (p)2 =
2∑

µ=1

4 sin2
(apµ

2

)
. (57)

Since D̃F (p) is hermitian, (57) shows that only the origin (p1, p2) = (0, 0)
gives the zero of D̃F (p). It proves that there appears no doubler in the
fermionic sector.

4.3. No need of fine-tuning
We give a perturbative argument to show that the lattice action converges
to the desired continuum theory in the quantum mechanical sense without
any fine-tuning.
After integrating out the auxiliary fields in the theory near the continuum
limit, let us consider local operators of the type:

Op(x) = Mmϕ(x)α∂βψ(x)2γ , (58)
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where m,α, β, γ = 0, 1, 2, · · · , and ∂ means derivative operators. ϕ(x) and
ψ(x) represent a general bosonic field and a general fermionic field, respec-
tively. The mass dimension of Op(x) is p ≡ m + α + β + 3γ. Dimensional
analysis tells that radiative corrections to Op(x) has the form

(
1

g2
2d

c0a
p−4 + c1a

p−2 + g2
2dc2a

p + · · ·
)∫

d2xOp(x) (59)

up to possible powers of ln(aM). c1, c2, c3 are dimensionless numerical
constants. The first, second and third terms in the parenthesis are contri-
butions from tree, 1-loop and 2-loop effects, respectively. The “· · · ” is a
contribution from higher loops, which is irrelevant for the analysis. Since
relevant or marginal operators generated by loop effects possibly appear
from nonpositive powers of a in the second and third terms, we should see
operators with p = 0, 1, 2. They are ϕ, Mϕ and ϕ2. (Note that 11, M ,
M2 and ∂ϕ are not dynamical.) Candidates for ϕ are linear combinations
of trXi and trBA from gauge and SU(2)R symmetries. But, all of them
are not invariant under Q± supersymmetries, and thus are forbidden to
appear. Similarly we can show that Mϕ and ϕ2 are not allowed to be gen-
erated. Hence, we can conclude that any relevant or marginal operators
except nondynamical constant operators are not radiatively generated. It
is shown that no fine-tuning is required in taking the continuum limit.

5. Matrix String theory

The mass-deformed N = (8, 8) SYM in two dimensions can be obtained
from the lattice theory around the trivial minimum C = φ± = 0 as seen in
the previous section. Since M is a soft mass breaking 16 supersymmetries
to Q±, the undeformed theory, which is nothing but IIA matrix string
theory [2], can be defined by turning off M after the continuum limit.

6. 4d N = 4 SYM

In this section, we discuss a scenario to obtain four-dimensional N = 4
SYM from the lattice formulation given in section 4..
Let us consider the lattice theory around the minimum of k-coincident fuzzy
S2:

C =
2M0

3
L3, φ± =

M0

3
(L1 ± iL2) (60)

with La = L
(n)
a ⊗ 11k (a = 1, 2, 3) and N = nk. L

(n)
a are SU(2)-generators

of n-dimensional irreducible representation.
First, we take the continuum limit of the two-dimensional lattice theory.
Then, we obtain four-dimensional N = 4 U(k) SYM on R2 × (Fuzzy S2)
with 16 supersymmetries softly broken to Q±. Noncommutativity of the
fuzzy S2 is characterized by the parameter

θ ' 1
M2n

, (61)
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and in fuzzy S2 directions UV cutoff is set at Λ ' Mn and IR cutoff is
given by M .
Next, we consider the following two steps:

1. Take large n limit with θ and k fixed. Namely, M ∝ n−1/2 → 0 and
λ ∝ n1/2 →∞.

2. Send θ to zero.

6.1. Step 1

At the step 1, we should investigate radiative corrections in four-dimensional
SYM on R2×(Fuzzy S2). However, we give an argument below that there is
no radiative correction which prevents from full 16 supersymmetries being
restored after the step 1.
For a general quantum field theory defined on noncommutative (NC) space-
time, we should consider two kinds of Feynman diagrams separately. One
is planar diagrams which have no NC phase factors causing UV/IR mix-
ing. Much is the same as in the theories on ordinary space-time, and M
appearing in the planar diagrams is soft for UV singularities. The other
is nonplanar diagrams. There appear NC phase factors which improve the
UV behavior of the diagrams. But, IR singularities come from vanishing
NC phase which arise even in massive theories (UV/IR mixing). Then, we
can say that M is insensitive (“soft”) for singularities from UV/IR mixing.
The superficial degrees of UV divergence of Feynman diagrams is given by

D = 4− EB − 3
2
EF , (62)

where EB and EF are the number of the external lines of bosons and that
of fermions, respectively. Note that the divergence with D = 3 by EB = 1
is absent since the operator ϕ is forbidden by Q± supersymmetries. Thus,
possible most severe divergence D = 2 comes from UV divergences in planar
diagrams and from UV/IR divergences in nonplanar diagrams. The leading
Λ2 terms are expected to cancel each other by 16 supersymmetries, because
M is a soft mass and the full 16 supersymmetries are effective to the leading
contribution in UV region. Possible divergences originate from the mass
deformation, whose behavior is expected as

Mp

(
ln

Λ
M

)q

' Mp(lnn)q (p = 1, 2, q = 1, 2, · · · ) (63)

which vanishes in the limit taken at the step 1.
If this argument works, no radiative correction prevents restoration of the
full 16 supersymmetries after the step 1. Therefore, four-dimensionalN = 4
U(k) SYM on R2 ×NC R2 with 16 supersymmetries is obtained.
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6.2. Step 2
In four-dimensional N = 4 SYM on NC space, θ → 0 limit is believed to
be smooth [20]. (See also [21] for discussions in the context of AdS/CFT
correspondence.) If this is true, desired U(k) SYM on ordinary R4 can be
obtained with no fine-tuning after the step 2.

7. Summary and discussion

In this article, firstly we presented a lattice formulation for mass-deformed
N = (8, 8) U(N) SYM in two dimensions preserving two supercharges Q±.
Owing to the mass-deformation, flat directions of scalars are stabilized.
Also, since the mass is soft, ordinary two-dimensional N = (8, 8) SYM is
obtained by turning off the mass after the continuum limit. It is applicable
to nonperturbative analysis of IIA matrix string theory [2].
Secondly, we discussed a scenario to obtain four-dimensional N = 4 U(k)
SYM from the two-dimensional theory around a fuzzy S2 background. To
establish the scenario, explicit calculation of diagrams of the theory on
R2× (Fuzzy S2) is desirable. If it is correct, four-dimensional N = 4 SYM
with gauge group U(k) of finite rank can be defined nonperturbatively.
It will give an intriguing tool to check AdS/CFT correspondence [3] in a
regime where string loop effects cannot be neglected.
Thirdly, it is possible to construct a similar mass-deformed lattice model for
two-dimensional N = (4, 4) U(N) SYM. Then, flat directions of scalars are
lifted preserving Q± supersymmetries. In particular, the mass-deformed
theory preserves the full 8 supersymmetries. Four-dimensional theory con-
structed around a fuzzy S2 background will become N = 2 U(k) SYM on
R2 ×NC R2. This time, the limit turning off θ will not be smooth.
Finally, it is also interesting to construct a similar lattice formulation for
SQCD coupled with matter fields and for N = 1∗, 2∗ theories.
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