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Abstract

Massive 3-forms are analyzed from the point of view of the Hamilto-
nian quantization using the gauge-unfixing approach and respectively
the Batalin-Fradkin method. Both methods finally output a mani-
festly Lorentz covariant path-integral.

1. Introduction

The purpose of this paper is to present the problem of the Hamiltonian
quantization of the massive 3-form in the framework of the gauge-unfixing
(GU) approach [1]–[2] and respectively of the Batalin-Fradkin (BF) method
[3]–[5] based on path integral. The main idea is to associate with the
original second-class theory an equivalent first-class system. The associated
first-class system has to satisfy the following requirements: its number
of physical degrees of freedom coincides with that of the original second-
class theory, the algebras of classical observables are isomorphic and the
first-class Hamiltonian restricted to the original constraint surface reduces
to the original canonical Hamiltonian. The above isomorphism renders
the equivalence of the two systems also at the level of the path integral
quantization and hence allows the replacement of the Hamiltonian path
integral for the original second-class theory with that of the equivalent
first-class system.

2. Gauge unfixing method

The starting point is a bosonic dynamic system with the phase-space locally
parameterized by n canonical pairs za =

(
qi, pi

)
, endowed with the canon-

ical Hamiltonian Hc, and subject to the purely second-class constraints

χα0 (za) ≈ 0, α0 = 1, 2M0, (1)
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Assume that one can split the second-class constraint set (1) into two sub-
sets

χα0 (za) ≡
(
Gᾱ0 (za) , C β̄0 (za)

)
≈ 0, ᾱ0, β̄0 = 1,M0. (2)

such that [
Gᾱ0 , Gβ̄0

]
= Dγ̄0

ᾱ0β̄0
Gγ̄0 . (3)

Relations (3) yield the subset

Gᾱ0 (za) ≈ 0 (4)

to be first-class. The second-class behaviour of the overall constraint set
ensures that Cᾱ0 (za) ≈ 0 may be regarded as some gauge-fixing conditions
for this first-class set.
We introduce an operator X̂ [6]–[8] that associates with every smooth func-
tion F on the original phase-space an application X̂F

X̂F = F − Cᾱ0 [Gᾱ0 , F ] + 1
2Cᾱ0C β̄0

[
Gᾱ0 ,

[
Gβ̄0

, F
]]− · · · , (5)

which is in strong involution with the functions Gᾱ0 .
The original second-class theory and respectively the gauge-unfixed system
are classically equivalent since they possess the same number of physical
degrees of freedom NO = 1

2 (2n− 2M0) = NGU and the corresponding
algebras of classical observables are isomorphic. Consequently, the two
systems become also equivalent at the level of the path integral quantization
and we can to replace the the Hamiltonian path integral of the original
second-class theory with the Hamiltonian path integral of the gauge-unfixed
first-class system.
In the sequel we shall quantize the massive 3-forms on behalf of GU method.
We start from the Lagrangian action of massive 3-forms in D ≥ 4 [9]–[10]

SL
0 [Aµνρ] =

∫
dDx

(
− 1

48FµνρλFµνρλ − m2

12 AµνρA
µνρ

)
. (6)

By performing the canonical analysis [11]–[12] of this model, there result
the irreducible second-class constraints

χ(1)ij ≡ π0ij ≈ 0, (7)

χ
(2)
ij ≡ 3∂kπkij − m2

2 A0ij ≈ 0, (8)

along with the canonical Hamiltonian

Hc(x0) =
∫

dD−1x
(
−3πijkπ

ijk + 1
48FijkF

ijk

+ m2

12 AµνρA
µνρ − 3A0ij∂kπ

kij
)

. (9)
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According to the GU method we consider (8) as the first-class constraint
set and the remaining constraints (7) as the corresponding canonical gauge
conditions and redefine the first-class constraints as

Gij ≡ − 1
m2

(
3∂kπ

kij − m2

2 A0ij
)
≈ 0. (10)

The first-class Hamiltonian with respect to (10) follows from relation (5)

X̂Hc(y0) = Hc(y0)−
∫

dD−1y
[

1
2π0ij∂kA

kij − 1
12m2 ∂[iπjk]0∂

[iπjk]0
]
. (11)

An irreducible set of constraints can always be replaced by a reducible one
by introducing constraints that are consequences of the ones already at
hand [13]. In view of this, we supplement (10) with one more constraint,
Gi ≡ −m2

2 ∂jG
ji ≈ 0, such that the new constraint set

Gij ≡ − 1
m2

(
3∂kπ

kij − m2

2 A0ij
)
≈ 0, Gi ≡ −m2

2 ∂jA
0ji ≈ 0, (12)

remains first-class and, moreover, becomes off-shell second-order reducible.
If we make the transformations A0ij → − 1

m2 Πij and π0ij → m2Bij , then
the constraints (12) become

Gij ≡ − 1
m2

(
3∂jπ

ji + 1
2Πij

) ≈ 0, Gi ≡ 1
2∂jΠji ≈ 0, (13)

while the first-class Hamiltonian (11) takes the form

HGU (y0) =
∫

dD−1y
[

1
48FijklF

ijkl + m2

12

(
∂[iBjk] + Aijk

) (
∂[iBjk] + Aijk

)

− 3πijkπ
ijk − 1

4m2 ΠijΠij + 1
m2 Πij

(
3∂kπ

kij + 1
2Πij

)]
. (14)

Due to the equivalence between the reducible first-class system and the
original second-class theory, one can replace the Hamiltonian path integral
of massive 3-forms with that associated with the reducible first-class system.
The argument of the exponential from the Hamiltonian path integral of the
second-order reducible first-class system reads as

SGU =
∫

dDx
(
πijkȦ

ijk + ΠijḂ
ij −HGU − λijG

ij − λiG
i
)

. (15)

We enlarge the original phase-space with the Lagrange multipliers
{
λ̄ij , λi

}
and with their canonical momenta

{
pij , pi

}
and in order to preserve the

number of physical degree of freedom we add the first-class constraints

pij ≈ 0, pi ≈ 0. (16)



280 Silviu Constantin Sararu

If we perform the transformations Πij → Πij and λij → λ̄ij = λij − Πij in
the path integral, then the argument of the exponential from the Hamilto-
nian path integral for the theory with the phase-space locally parameter-
ized by fields/momenta

{
Aijk, Bij , λ̄ij , λi, π

ijk, Πij , pij , pi
}

and subject to
the first-class constraints (13) and (16) reads as

S′GU =
∫

dDx
[
πijkȦ

ijk + ΠijḂ
ij + pij ˙̄λij + piλ̇i − 1

48FijklF
ijkl

− m2

12

(
∂[iBjk] + Aijk

) (
∂[iBjk] + Aijk

)
+ 3πijkπ

ijk + 1
4m2 ΠijΠij

+ 1
m2 λ̄ij

(
3∂kπ

kij + 1
2Πij

)
− 1

2λj

(
∂jΠji

)− Λijp
ij − Λip

i
]
. (17)

Performing in (17) the integration over
{
πijk,Πij , pij , pi, Λij , Λi

}
and mak-

ing the notations 1
m2 λ̄ij ≡ Āij0 and 1

4λi ≡ Bi0, the functional (17) associ-
ated with the reducible first-class system takes now a manifestly Lorentz
covariant form

S̃GU

[
B̄µν , Āµνρ

]
=

∫
dDx

[
− 1

48 F̄µνρλF̄µνρλ

− 1
12

(
Fµνρ −mĀµνρ

) (
Fµνρ −mĀµνρ

)]
, (18)

with

Āµνρ ≡
(
Ā0ij , Aijk

)
, F̄µνρλ = ∂[µĀνρλ], (19)

B̄µν = − 1
mBµν , Fµνρ = ∂[µB̄νρ], (20)

and describes precisely the (Lagrangian) Stückelberg coupling [14] between
the 2-form B̄µν and 3-form Āµνρ.
In the sequel we show how the massive 3-form gets related to the 4-form
gauge fields. In order to do this we start from the GU system constructed
in the above (subject to the first-class constraints (10) whose evolution is
governed by the first-class Hamiltonian (11)) and consider the quantities

Fijk = Aijk + 1
m2 ∂[iπjk]0, F0ij = A0ij , (21)

which are in involution with first-class constraints (10). We define

Wµνρλ = ∂[µFνρλ], where Fµνρ ≡ {F0ij ,Fijk} . (22)

By direct computation, it follows that

∂µWµνρλ = m2Fνρλ +O (
Gij

)
. (23)
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From (23) we obtain that
∂νFνρλ = 0. (24)

The fields Fµνρ can be written in terms of a 4-form Bαβγδ

Fµνρ = 1
5! εµνραβγδεF

αβγδε, (25)

where Fαβγδε = ∂[αBβγδε]. Consequently, we enlarge the phase-space by
adding the bosonic fields/momenta

(
Bαβγδ, παβγδ

)
. When we replace (25)

in (10) the constraints set takes the form

Gij ≡ − 1
m2

(
3∂kπ

kij − m2

2·5!ε
0ijklnqrFklnqr

)
≈ 0, (26)

remains first-class and becomes second-order reducible. In order to pre-
serve the number of physical degrees of freedom we must to impose the
constraints

G(1)ijk ≡ 4∂lπ
lijk ≈ 0, G(2)ijk ≡ π0ijk ≈ 0. (27)

The constraints (26) and (27) are first-class and reducible. The first-class
Hamiltonian becomes

H ′
GU (y0) =

∫
d7y

[
1
48FijklF

ijkl + m2

12 AijkA
ijk + 1

3!ε0ijklnqrA
ijkπlnqr

+ m2

2·5!FijklnF ijkln − 3πijkπ
ijk + 12

m2 πijklπ
ijkl

+ 1
5 ! ε0ijlnqrsF

lnqrs
(
3∂kπ

kij − m2

2·5 !ε
0ijl′n′q′r′s′Fl′n′q′r′s′

)]
. (28)

The argument of the exponential from the Hamiltonian path integral of the
above reducible first-class system as

S′GU =
∫

d8x
[
πijkȦ

ijk + π0ijkḂ
0ijk + πijklḂ

ijkl −H′GU

−λijG
ij − λ

(1)
ijkG

(1)ijk − λ
(2)
ijkG

(2)ijk
]
. (29)

After integrating out the auxiliary fields and performing some field redefi-
nitions, we obtain

S̃GU [Aµνρ, Bαβγδ] =
∫

d8x
[
− 1

48FµνρλFµνρλ − m2

3!·5!εµνραβγδεA
µνρFαβγδε

+ m2

2·5 ! FαβγδεF
αβγδε

]
, (30)

and describes a generalized Chern-Simons coupling [15]-[17] between the
3-form Aµνρ and 4-form Bαβγδ.
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3. BF method

In order to construct a first-class system equivalent to the starting second-
class one (subject to the second-class constraints (1)) in the framework
of the BF approach we enlarge the original phase-space with (ζα)α=1,2M ,
(M ≥ M0). The next step is to construct a set of independent, smooth,
real functions defined on the extended phase-space, (GA (z, ζ))A=1,M0+M

such that

Gα0 (z, 0) ≡ χα0 (z) , GĀ (z, 0) ≡ 0, [GA, GB] = 0, (31)

where Ā = 2M0 + 1,M0 + M . In the last step we generate a smooth,
real function, defined on the extended phase-space, HBF (z, ζ) with the
properties

HBF (z, 0) ≡ Hc (z) , [HBF , GA] = V B
A GB. (32)

The previous steps unravel a dynamic system subject to the first-class con-
straints (GA (z, ζ))A=1,M0+M ≈ 0 whose evolution is governed by the first-
class Hamiltonian HBF (z, ζ). If we denote by SBF the BF system, then
SBF is classically equivalent with SO, since both of them display the same
number of physical degrees of freedom

NO =
1
2

(2n− 2M0) =
1
2

[2 (n + M)− 2 (M0 + M)] = NBF , (33)

the corresponding algebras of classical observables are isomorphic. Conse-
quently, SBF and SO become also equivalent at the level of the path integral
quantization and we can to replace the the Hamiltonian path integral of
the original second-class theory with that of the BF first-class system.
In the case of the massive 3-forms we enlarge the original phase-space by
adding the bosonic fields/momenta (Bµν , Πµν)µ,ν=0,D−1. The constraints
GA (z, ζ) ≈ 0 gain in this case the concrete form

G(1)ij ≡ χ(1)ij+mBij ≈ 0, G
(2)
ij ≡ χ

(2)
ij −

m

2
Πij ≈ 0, G ≡ Π0i ≈ 0. (34)

It is easy to check that they form an irreducible first-class constraint set.
The first-class Hamiltonian complying with the general requirements (32)
is expressed by

HBF (x0) = Hc(x0) +
∫

dD−1x

[
1
4ΠijΠij − 1

mΠij

(
3∂kπkij − m2

2
A0ij

)

−1
3

(
mAijk − ∂[iBjk]

)
∂[iBjk] − 1

4∂[iBj]0 (mA0ij + Πij)
]
. (35)

The argument of the exponential from the Hamiltonian path integral of the
above BF first-class system, equivalent with that of massive 3-forms takes
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the form

SBF =
∫

dDx
(
π0ijȦ

0ij + πijkȦ
ijk + Π0iḂ

0i + ΠijḂ
ij −HBF

−λ(1)ijG
(1)
ij − λ(2)ijG

(2)
ij − λiGi

)
. (36)

Integrating in the path integral over {πijk} and employing the change of
variables Πij → Π′ij = Πij + mA0ij and π0ij → π′0ij = π0ij + mBij , the
argument of the exponential from the Hamiltonian path integral becomes

S′BF =
∫

dDx
[
π′0ijȦ

0ij + Π′ijḂ
ij + Π0iḂ

0i

− 1
48FijklF

ijkl − 1
12

(
2∂[iBjk] −mAijk

) (
2∂[iBjk] −mAijk

)

− 1
12

(
∂0Aijk − 1

m∂[iΠ
′
jk] + ∂[iλ

(2)
jk]

)(
∂0Aijk − 1

m∂[iΠ′jk] + ∂[iλ(2)jk]
)

−1
4 Π′ijΠ

′ij + 1
4∂[iBj]0Π′ij − λ(1)ijπ′0ij −mλ(2)ijΠ′ij − λiΠ0i

]
. (37)

Performing in the last form of the path integral the change of variables
Π′ij → Ā0ij = 1

mΠ′ij −λ
(2)
ij and λ

(2)
ij → λ

(2)
ij the argument of the exponential

from the path integral is turned into

S′′BF =
∫

dDx
[
π′0ijȦ

0ij + m
(
Ā0ij + λ

(2)
ij

)
Ḃij + Π0iḂ

0i

− 1
48FijklF

ijkl − 1
12

(
∂0Aijk − ∂[iĀjk]0

) (
∂0Aijk − ∂[iĀjk]0

)

+ m
4 ∂[iBj]0

(
Ā0ij + λ

(2)
ij

)
− 1

12

(
2∂[iBjk] −mAijk

)(
2∂[iBjk] −mAijk

)

−m2

4 Ā0ijĀ
0ij + m2

4 λ
(2)
ij λ(2)ij − λ(1)ijπ′0ij − λiΠ0i

]
. (38)

Integrating in the path integral over
{

π′0ij , λ
(1)ij , Π0i, λ

i, A0ij , λ
(2)
ij

}
the ar-

gument of the exponential reduces to

S′′′BF =
∫

dDx
[
− 1

2·4!FijklF
ijkl − 1

2·3!

(
∂0Aijk − ∂[iĀjk]0

)(
∂0Aijk − ∂[iĀjk]0

)

− 1
4

[(
∂0B̄ij + ∂[iB̄j]0

)−mĀ0ij

] [(
∂0B̄ij + ∂[iB̄j]0

)
−mĀ0ij

]

− 1
2·3!

(
∂[iB̄jk] −mAijk

) (
∂[iB̄jk] −mAijk

)
. (39)
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where B̄ij = 2Bij and B̄0i ≡ 1
2B0i. The last functional associated with the

equivalent first-class system takes now a manifestly Lorentz covariant form

S̃BF

[
B̄µν , Āµνρ

]
=

∫
dDx

[
− 1

48
F̄µνρλF̄µνρλ (40)

− 1
12

(
Fµνρ −mĀµνρ

) (
Fµνρ −mĀµνρ

)]
, (41)

with

Āµνρ =
(
Ā0ij , Aijk

)
, F̄µνρλ = ∂[µĀνρλ], (42)

B̄µν =
(
B̄0i, B̄ij

)
, Fµνρ = ∂[µB̄νρ], (43)

and describes the (Lagrangian) Stückelberg coupling between the 2-form
B̄µν and the 3-form Āµνρ.

4. Conclusion

We analyzed the problem of the Hamiltonian quantization of the massive 3-
forms using GU and respectively BF methods. In the framework of the first
approach, starting from the original canonical Hamiltonian, we generated
a first-class Hamiltonian with respect to the first-class constraint subset.
We built the Hamiltonian path integral of the GU first-class system and
after integrating out the auxiliary fields and performing some variable re-
definitions the path integral finally takes a manifestly Lorentz covariant
form. The second approach involves an appropriate extension of the orig-
inal phase-space and then the construction of a first-class system on the
extended phase-space that reduces to the original, second-class theory in
the zero limit of all extra variables. The Hamiltonian path integral of the
BF first-class system takes, after integrating out some of the variables and
performing some field redefinitions, a manifestly Lorentz covariant form.
Both approaches require appropriate extensions of the phase-space in order
to render a manifestly covariant path integral.

Acknowledgments

The author thanks Professor Branko Dragovich for the possibility to give a
talk in the 6th Mathematical Physics Meeting: Summer School and Con-
ference on Modern Mathematical Physics, 14-23 September 2010, Belgrade,
Serbia and the warm hospitality.
This work was supported by the strategic grant POSDRU/89/1.5/S/61968,
Project ID61968 (2009), co-financed by the European Social Fund within
the Sectorial Operational Program Human Resources Development 2007-
2013. Also, this work was partially supported by ICTP–SEENET-MTP
project PRJ-09 “Cosmology and Strings ”, Nǐs, Serbia.
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