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Abstract

We review recent work which constructs a non-Abelian system of equations with
(2, 0) supersymmetry [1]. The result requires a totally anti-symmetric 3-algebra
but the on-shell conditions imply that all the non-Abelian dynamics are restricted
to five-dimensions. Some applications to M5-branes are discussed.

1. Introduction and Motivation

String Theory offers a powerful and compelling framework to discuss gravity
and gauge interactions in a unified and quantum manner. However String
Theory, as generally understood, is only really defined as a set of pertur-
bative ‘Feynman’ rules. As such there is no nonperturbative definition and
rather there exists 5 different sets of such ‘rules’.
Over the past 15 years a crucial ingredient of String Theory are Dp-branes
[2]. These are extended objects with p spatial dimensions which are the
allowed end points of open strings. As such their quantum dynamics deter-
mined by quantizing these open strings and this leads to (p+1)-dimensional
Yang-Mills Gauge theory and in particular a non-Abelian structure on par-
allel D-branes.
However there is strong - perhaps overwhelming - evidence for a single
complete unifying theory known as M-theory. One ‘definition’ of M-Theory
is as the strong coupling limit of type IIA. In this case the radius of the
extra dimension is given by R11 = gsls, where gs is the string coupling
constant and ls =

√
α′ is the string length. It is then claimed that the

weak curvature effective action is 11D supergravity [3], which is uniquely
determined by supersymmetry. In any case, to date there is no satisfactory
microscopic description or definition. i M-theory does not contain any
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strings (otherwise we’d have a string perturbation expansion). Rather it
contains 2-branes (the M2-brane) and 5-branes (the M5-brane). These
can be thought of as the lifts of the D2-brane and D4-brane of type IIA
string theory respectively. Since these theories are described by maximally
supersymmetric Yang-Mills gauge theories we see that, at least at a formal
level, the M-theory/type IIA duality implies the following: M2-branes arise
as the strongly coupled limit of D2-branes. So their worldvolume theory
is the IR conformal fixed point of 3D Super-Yang-Mills. M5-branes arise
as the strongly coupled limit of D4-branes. Thus their worldvolume theory
arises as some kind of UV completion of 5D Super-Yang-Mills.
The past few years has seen a great deal of progress in our understanding
of M2-branes and in particular a description in terms of Lagrangian field
theories. Technically the break through is based on the discovery of novel
Chern-Simons-Matter CFT’s in 3D with large amounts of supersymmetry
(N = 8, 6, ...) ( [4],[5], [6],...). The result is a fairly complete Lagrangian
description of multiple M2-branes in flat space or various orbifolds of flat
space.
One novel feature of these theories is that the amount of supersymmetry is
determined by the gauge group, e.g.: N = 8 supersymmetry restricts the
gauge group to SU(2)×SU(2) whereas N = 6 supersymmetry allows U(n)×
U(m), Sp(n) × U(1). Other theories can be found with lessor amounts of
supersymmetry and more general gauge groups.
The Lagrangians for M2-branes are completely specified by a 3-algebra. For
our purposes a vector space V with basis T a and a linear triple product

[TA, TB, TC ] = fABC
DTD

and the fields take values in V , so we can expand XI = XI
ATA, Ψ = ΨATA.

The 3-algebra generates a Lie-algebra action on the fields XI :

XI → ΛAB[XI , TA, TB]

provided that the triple product satisfies a quadratic ‘fundamental’ identity
(generalization of Jacobi). The details of the identity vary slightly by are
always equivalent to the statement that this action acts as a derivation.
It turns out the the symmetries of [TA, TB, TC ] determine the amount
of supersymmetry and also the gauge group. For example in the cases
mentioned above we find that for N = 8 supersymmetry [TA, TB, TC ] is
totally anti-symmetric whereas for N = 6 supersymmetry [TA, TB; TC ] =
−[TB, TA; TC ] and complex anti-linear in TC .
In addition to these M2-branes M-Theory also possesses M5-branes. These
are half-BPS states that have 5 extended spatial dimensions. A set of n
parallel M5-branes lead to a strongly coupled 6D CFT. Very little is known
about such a theory and it seems much, much harder than M2-branes (see
below). Indeed hardly anything is known of conformal field theories in
more than 4 dimensions. There has been much recent attention on the
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reduction of the M5-brane theory to four-dimensional gauge theories with
and without a Lagrangian description [7].
In this talk we will review a construction of classical 6D theories with
(2, 0) supersymmetry [1]. We will see that 3-algebras arise quite naturally.
However we will also find that the non-Abelian dynamics is constrained
to five dimensions. This later fact that suggests that a good first step is
to look for a (2, 0) reformulation of D4-branes. From there one can then
revisit the relation of D4-branes to the M5-brane [8].
The rest of this talk is organized as follows. In the next section we provide a
review of M5-branes. Then in section 3 we give our construction of a system
of equations of motion with (2, 0) supersymmetry. Finally in section 4 we
will end with a brief summary of our conclusions and some comments.

2. M5-branes

The worldvolume of a parallel stack of M5-branes preserves 16 supersym-
metries and 1 + 5 dimensional Poincare symmetry along with an SO(5)
R-symmetry

SO(1, 10) → SO(1, 5)× SO(5) 32 → 16

In particular the preserved supersymmetries satisfy Γ012345ε = ε and this
leads to (2, 0) supersymmetry in D = 6 with Goldstinos zero modes

Γ012345Ψ = −Ψ

and 5 scalars
XI

The remaining Bosonic degrees of freedom arise from a self-dual tensor

Hµνλ =
1
3 !

εµνλρστH
ρστ

As we mentioned in the introduction, from the type IIA perspective the
M5-brane arises as the strong coupling (UV) limit of D4-branes. Thus
somehow in the strong coupling limit an extra spatial dimension arises,
in other words there is an enhancement of the Poincare symmetry. The
appearance of an extra spatial dimension is curious, and analogous to the
type IIA to M-theory lift. This is in contrast to the case of D2-branes lifting
to M2-branes where one finds an enhanced R-symmetry at the conformal
fixed point.
Now, at weak coupling the effective theory of n D4-branes is five-dimensional
maximally supersymmetric U(n) Yang Mills. This theory is naively non-
renormalizable. However M-theory implies that there is a UV comple-
tion given by the M5-brane and is a six-dimensional conformal field the-
ory! Since no interacting 6D CFT is known and the 5D theory is non-
renormalizable it is a case of the blind leading the blind, ie. no definition
is available at either end (although there is a matrix theory attempt [9]).
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One might ask where are the KK momentum modes of the M5-brane on
S1. To see this one notes that in type IIA an 11D KK mode appears as a
D0-brane and D0-branes appear in the D4-brane as instanton soliton states.
Such soliton states have a mass

m ∝ 1
g2
Y M

∝ 1
R11

Thus the instantons of the 5D Yang-Mills theory have the interpretation as
KK momentum of the 6D CFT on S1 [10] and in particular

m → 0 as R11 →∞⇐⇒ gY M →∞

However this identification has several odd features and puzzles. Firstly
the momentum modes of the sixth dimension are not local with respect
to other (charged) momentum modes. Secondly where are the KK modes
in the Coloumb phase when the D4-branes are separated (since there a
no 1/2 BPS instantons in this case)? Thirdly the Instanton moduli space
is non-compact due to an arbitrary scale size. This leads to a continuous
spectrum of particle states and this seems to contradict their interpretation
as Kaluza-Klein states of a well-defined theory in six dimensions.

Finally the entropy of D4-branes scales as n2 whereas that of M5-branes
like n3. This is a curious increase in the number of states which is often
cited as a signature of the M-brane theory. On the other hand the D4-brane
should already know about 6D of the form R5 × S1 and therefore it is of
interest to try to understand the D4-brane from more of a six-dimensional
perspective.

3. (2, 0) supersymmetry in D = 6

So let us now consider classical systems of equations that furnish a repre-
sentation of (2, 0) supersymmetry in six-dimensions. First consider the free
Abelian theory of a single M5-brane [12]. At linearized level the supersym-
metry variations are

δXI = iε̄ΓIΨ (1)

δΨ = ΓµΓI∂µXIε +
1
3 !

1
2

ΓµνλHµνλε (2)

δHµνλ = 3iε̄Γ[µν∂λ]Ψ ,

and the equations of motion are those of free fields with dH = 0 (and hence
d ? H = 0), ∂µ∂µXI and Γµ∂µΨ = 0. This theory has a nice reduction to
the D4-brane theory by setting ∂5 = 0 and

Fµν = Hµν5
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More generally, in the non-linear version, one finds H satisfies a non-linear
self-duality which upon reduction gives

dF = 0 d ?

(
F√

1 + F 2

)
= 0

Thus the non-linear self-duality condition gives rise to precisely the non-
linear equations of motion of the Dirac-Born-Infeld Lagrangian [12].
We wish to generalize this algebra to non-Abelian fields. To do this we
introduce a suitable covariant derivative

DµXI
A = ∂µXI

A − ÃB
µ AXI

B

Now one thing that we expect is that upon reduction we should find the
supersymmetry transformations of Yang-Mills:

δXI = iε̄ΓIΨ

δΨ = ΓαΓIDαXIε +
1
2

ΓαβΓ5Fαβε− i

2
[XI , XJ ]ΓIJΓ5ε

δAα = iε̄ΓαΓ5Ψ ,

In order to do this we need a term in δΨ that is quadratic in XI and which
has a single Γµ. To enable this we simply postulate the existence of a new
field Cµ

A.

Without going through the derivation that we give in [1], after starting
with a suitably general ansatz we find the following supersymmetry trans-
formations:

δXI
A = iε̄ΓIΨA

δΨA = ΓµΓIDµXI
Aε +

1
3 !

1
2

ΓµνλHµνλ
A ε− 1

2
ΓλΓIJCλ

BXI
CXJ

DfCDB
Aε

δHµνλ A = 3iε̄Γ[µνDλ]ΨA + iε̄ΓIΓµνλκCκ
BXI

CΨDfCDB
A

δÃ B
µ A = iε̄ΓµλCλ

CΨDfCDB
A

δCµ
A = 0

where fABC
D are totally anti-symmetric structure constants of the N = 8

3-algebra (possibly Lorentzian).
These transformation close and provide an example of (2, 0) supersymmetry
with SO(5) R-symmetry and scale symmetry (Cµ

A has dimensions of length)
provided that the following on-shell conditions hold:

0=D2XI
A −

i

2
Ψ̄CCν

BΓνΓIΨDfCDB
A − Cν

BCνGXJ
CXJ

EXI
F fEFG

DfCDB
A

0=D[µHνλρ] A+
1
4
εµνλρστC

σ
BXI

CDτXI
DfCDB

A +
i

8
εµνλρστC

σ
BΨ̄CΓτΨDfCDB

A
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0 = ΓµDµΨA + XI
CCν

BΓνΓIΨDfCDB
A

0 = F̃µν
B

A − Cλ
CHµνλ DfCDB

A

0 = DµCν
A = Cµ

CCν
DfBCD

A

0 = Cρ
CDρX

I
DfCDB

A = Cρ
CDρΨDfCDB

A = Cρ
CDρHµνλ AfCDB

A ,

The restriction on Cµ
A is quite strong and in effect Cµ

A picks out a fixed
direction in space and in the 3-algebra. In particular without loss of gen-
erality one can take Cµ

A = g2
Y Mδµ

5 δ0
A. As a consequence we see that the

non-Abelian (A 6= 0) momentum modes parallel to Cµ must vanish. Thus
we obtain a non-Abelian 5D Yang-Mills multiplet (A 6= 0) along with free
6D tensor multiplets (A = 0).
However it is interesting to note that we could also consider a null reduction,
xµ = (u, v, xi):

Cµ
A = g2

Y Mδµ
v δ0

A

The resulting equations are (fab
c = f0ab

c)

0 = D2XI
a −

ig

2
Ψ̄cΓvΓIΨdf

cd
a

0 = ΓµDµΨa + g2
Y MXI

c ΓvΓIΨdf
cd

a

0 = D[µHνλρ] a −
g2
Y M

4
εµνλρτvX

I
c DτXI

df cd
a − ig2

Y M

8
εµνλρτvΨ̄cΓτΨdf

cd
a

0 = F̃µν
b
a − g2

Y MHµνv df
db

a

with Dv = 0. This gives a curious variation of Yang-Mills. In particular
we find a system with 16 supersymmetries and an SO(5) R-symmetry but
unlike maximally supersymmetric Yang-Mills there is no potential for the
scalars. The interpretation of this system is unclear but it is natural to
suppose that they are related to an M5-brane with vanishing null momen-
tum.

4. Conclusions and Comments

In this talk we have discussed some needs and oddities of the M5-brane
theory. In particular we looked for interacting (2, 0) theories in six dimen-
sions. We did indeed find such a system in terms of 3-algebras. How-
ever the non-Abelian dynamics is restricted to five-dimensions (with some
non-interacting Abelian parts which are allowed to have six-dimensional
dynamics).
In fact in an odd sense this is can be viewed as a triumph. As we have
seen the Kaluza-Klein modes of the M5-brane are associated to instanton
states in five-dimensional super-Yang-Mills. Thus the six-dimensional the-
ory shouldn’t have both momentum and non-Abelian instanton-like states.
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We also obtained a null reduction that lead to a novel interacting system
with 16 supersymmetries, SO(5) R-symmetry and no potential. The most
natural interpretation of this is that it describes M5-branes with vanishing
null momentum.
Thus in summary the M5-brane is a rich and mysterious as ever. But hope-
fully some progress can be made towards defining the theory and exploring
its properties.
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