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ABSTRACT

We construct two classes of infinitely many commuting operators as-

sociated with the elliptic quantum group U, ,(sly). We call one of
them the integral of motion G,,, (m € N) and the other the boundary
transfer matrix Tp(z), (2 € C). The integral of motion G, is related
to elliptic deformation of the N-th KdV theory. The boundary trans-
fer matrix Tp(z) is related to the boundary Uy ,(sly) face model. We
diagonalize the boundary transfer matrix T5(z) by using the free field
realization of the elliptic quantum group, however diagonalization of
the integral of motion G,, is open problem even for the simplest case

Uyp(52).

1. Introduction

The free field approach provides a powerful method to study exactly solv-
able model [1]. The basic idea in this approach is to realize the commuta-
tion relations for the symmetry algebra and the vertex operators in terms
of free fields acting on the Fock space. We introduce the elliptic quantum
group U, ,(sly) [2, 3], and give its free field realization. Using the free
field realizations, we introduce two extended currents Fiy(z) [4] and U(z)
[5] associated with the elliptic quantum group U, ,(sly). We construct two
classes of infinitely many commuting operators for the elliptic quantum
group Uy ,(sly). We call one of them the integral of motion G,,, (m € N)
[4] and the other the boundary transfer matrix T5(z), (z € C) [6]. Our
constructions are based on the free field realizations of the elliptic quantum

group qup(s/l;), the extended currents and the vertex operator ®(®b)(z).
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Commutativity of the integral of motion is ensured by Feigin-Odesskii al-
gebra [7], and those of the boundary transfer matrix is ensured by Yang-
Baxter equation and boundary Yang-Baxter equation [8]. Two classes of
infinitely many commuting operators have physical meanings. The integral
of motion G,, is two parameter deformation of the monodromy of the N-th
KdV theory [9, 10]. The boundary transfer matrix Tg(z) is related to the
boundary U, ,(sly) face model that is lattice deformation of the conformal

field theory. We diagonalize the boundary transfer matrix T5(z) by using
the free field realization of the elliptic quantum group and the vertex oper-
ators. Diagonalization of the boundary transfer matrix allows us calculate

correlation functions of the boundary Uq,p(s/l;) face model [11, 12, 6].

The organization of this paper is as follows. In section 2 we introduce
the elliptic quantum group Uq7p(g];) [2, 3], and give its free field realiza-
tion. In section 3 we introduce two extended currents F(z), En(z) [4] and
U(z),V(z) [5, 13] associated with the elliptic quantum group Uq,p(s/l;).
We give the free field realization of the vertex operators ®(@)(z), using the
extended current U(z). We construct two classes of infinitely many com-
muting operators associated with the elliptic quantum group Uq,p(%). The

one is the integral of motion G,, [4] and the other is the boundary transfer
matrix T5(z) [6]. In section 4 we diagonalize the boundary transfer matrix
Tp(z) by using the free field realization of the vertex operators [5, 13, 6].

2. Elliptic quantum group qu(s/l?v)

In this section we introduce the elliptic quantum group Uq,p(%) and its
free field realization.

2.1. Quantum group

In this section we recall Drinfeld realization of the quantum group [14].
We fix a complex number ¢ such that 0 < |¢| < 1. Let us fix the integer

N =3,4,5,---. We use g-integer [n], = qq _qq . We use the abbreviation,

[e.9]

k
(zip1,p2 - pa)eo = [ (1= iP5 i ).
k1,ka, - kpr=0

The quantum group U, (@) is generated by hj, ajm, Tjn, (1S jJ S N—1:
m € Zzg,n € Z), ¢, d. Let us set the generating functions :L‘;t(z), )(2),05(2),
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(I=j=N-1)by
=2 T "
nez
¥i(q22) = " exp ( 4—q "D ajmz m) :
m>0
pi(g722) = g exp < 4=a") D tj-m? ) '
m>0

The defining relations are given by
[d,xj = n:vfn, [hj,d] = [hj, apm] = [d, akm) = 0, c: central,

Aipm|,[em], _
[aj,m7ak,n] = WQ c|m|5m+n,0a [hj7$ki<z)] = iAj,km;:i:<Z)a

[Ajrmlq _ - [Ajrmlq m
[aj,m,xz(z)]ijqq C‘m'zmxﬁ(Z), [aj,m,l“k (Z)]:—quzm% (2),

+

FAjk gy — zg)xf(@)l“j (21),

(21 — ¢= 4k 2g) 2 (

27 (1), 2 ()] = qif (8 21 /22)tb5(g5 22) — 8(q°21/22)5(q™ 5 2)),

z1)ai(22) = (q

and Serre relation for |j — k| =1,

(a7 (1)} (z2) 7 (2) — [ﬂqﬁ(Zl)xf(Z)xf(Zz)+$k( ) f(h) z; (22))

+H(@f (22)af (21)ai (2) = [2]ga] (22)ay (2)a (1) + i (2)25 (22) 25 (21)) = 0.
Here (Ajk)1<jr<n—1 is Cartan matrix of sl type. Here we used the delta
function §(2) = >, ez 2™

2.2. Elliptic quantum group

In this section we introduce the elliptic quantum group qup(%) 12, 3],

which is elliptic deformation of the quantum group Uy,(sly). We fix com-
plex numbers 7, s such that Re(r) > 1 and Re(s) > 0. When we change
the polynomial (z; — ¢ 222) in the defining relation of the quantum group

Uq (g;)a

(21— q 22)aj (21)7] (22) = (a7 221 — 22)a (22)7 (21),
to the elliptic theta function [u], we have

[u1 — U2 + 1] F; (Zl)Fj(ZQ) [u1 — Uy — 1] F; (ZQ)Fj(Zl).
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This is one of the defining relations of the elliptic quantum group Uq.p@;).

We set the elliptic theta function [u], [u]* by
[u] = ¢ O (¢7"), [u]" = qr "0 ("),
Op(2) = ()00 (21 D)oo (P2 D)o

where we set z = 2%

and r* = r — ¢. The elliptic quantum group Uq’p(%)

is generated by the currents F;(2), F;(2), Hj(qg_’“z) = H;(q_g”z), (1=

j = N —1). The defining relations are given by

[uz—m—i—%]*
[ul—uz—l—l—%
[ur — ug + 1J*
[ug —ug — 1J*

Ej(21)Ejt1(22) = ]*Ej+1(22)Ej(21),

Ej(z1)Ej(22) = Ej(z)Ej(21),
E;(z1)E(22) = Ex(22)Ej(21), otherwise,

iy — 1+ % - 1

w1 —uz = ]

Fj(z1)Fjy1(22) = Fji1(22) Fj(21),

[u1 — U9 — 1] ) )
mﬂ(@)ﬂ(zl),
Fj(z1)Fi(22) = F(22)Fj(z1), otherwise,

[Ul — Uy — 1][u1 — U9 + 1]*
[ur —ug + 1)[ug — ug — 1]*H;(22)H;(z1)’

Fj(21) Fj(z2) =

Hi (21)H (22) =

+ + _[Ul*U2+1*%HU1*UQ*%]*
H, (Zl)Hj+1(22) T o — g — 2

HT
Jur —ug +1 - F]* g+l

H;_(Zl)H]:_(ZQ) = H:(ZQ)H;_(Zl)7 otherwise,

[Ul—u2+1+%]*
[ul—ug—l—%]*
[ug —u1 + & + §I*

s _

Ul—U2+1—N

H;(Zl)Ej(Zg) = Ej(z2)H;r(zl)a

H;(zl)Ej_H(ZQ) = [ Ej+1(z2)H]+(Zl)7

]*
['U/Q—Ul‘f'l—% ]*
[ul—ug—%—ﬁ]

H;(zl)Ek(zz) = Ek(ZQ)H;(Zl), otherwise,

* o o

H \(21)Ej(2) = Ej(22)H (1),

(22)H;

(21)7(8)
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[ul—uQ—l—Q]
H (21)Fj(22) = L Fi(z)HT 14
SR ) = e B G ), (14
[UQ—U]__f'i_].—Q]
H(21)F; = N LF H; 15
j (21)Fjt1(22) [m—w—ﬁ—l—%} j+1(22) (1), (15)
(o)) = 2N A R (), (16)
j+1 J\=2 [y —ug+ 5 — 1+ 7 2)H 541\~
H;r(zl)Fk(ZQ) Fk(ZQ)H+(Zl) otherwise, (17)
. o — i
) I - —
[Ei(21), Fj(22)] — (g~ z1/20)H} (722 (18)
— 6(¢°z1/22)H; (q’%zy)) ,
and the Serre relations for |j — k| = 1,
1 g ( Z/ZU QT*)OO(QQT*ilz/ZQ? q2T*)oo 1_2s 1_2s
{(ZQ/Z)T @ 221 47 oo (q2r*+lz/22.q2r*)ooEj(q Nz1)Ej(q TN 22)
2r* — 2r*—1 . 2r*
=% o (@ o6 20/ 5 ¢ oo 12
xEp(q ™~ z) =2 P2 o1 2 ) oo (07 T 222 27 oo i(g' "N 21)
2r*—1 2r*—1
1-28 12 2 (@@ /567 )o@ /267 )
XE(¢ N 2)Ej(q "N z2)+(2/21)" (@ 21 2 ) oo (27 20/ 2 42 ) oo
. s s (@ 22 21547
E 1— 2 E 1— %\[ E 1— ?\/ } P (q 22/ %15 00
X k‘( Z) j(q Zl) j(q 22) 21 (q27‘*_222/2’1;q27‘*)oo
+ (Zl — 2’2) = 0 (19)
(q2”+lz/zl; 27‘) (q2r+1z/z2; Qr)oo 12 1_2s
r F F;
{(ZQ/Z) (@7 12/21; 6% )00 (¢7 12/ 22, 4% ) o il v a)Ele v z)
2r+1 . 2r+1 2r
=2y o 2/213:4° )0 (¢¥ 1 22/ 21 Joo o 1-2
xFi(q N z) Hq(qu—lz/zl;qz") (@ Toa )2 ) i N )
R s 2r+1 /Z. 2r) (q2r+1z /Z‘q27")
CF (B (0% ) + 1@ 21/247 oo 2/24" )0
Wg T E TN =)+ (2/2) (*121/26% )00 (4®" 122/ 25 4% ) oo
R s R 1 (2r—2 /Z .q2r)
Fio(q N 2) Fi(¢-~ 2)Fi(¢-~~ } 020/ oo
MG BB ) A e o)
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2.3. Free field realization

In this section we give the free field realization of the elliptic quantum group
Uqgp(sln) [2, 3, 5]. In what follows we restrict our interest to level ¢ = 1.
Let us introduce the bosons G, (1 < j < N;m € Z) by

m[(r — Dm]y [(s — 1)m]q5m+n70 (I=j=k=N)
‘ [rm]q [sm]q
(B Bn] = -

sm sgn(j—k) [(T’ — 1)m]q [m]q 5m+n0 (1 § j ?é k § N)

e [rm]q  [sm]q

We set the bosons B, (1= j = N;ym € Zy) by
Bl = (B, =B, a7 ™, (L1SjS N -1). (22)
They satisfy

[(r = 1)m]q [Ajxm]

[rmlg — [mlg

[Bganﬁ] =m q5m+n,07 (1 é j7k é N — 1)7 (23)

where (A;x)1<jp<ny—1 is Cartan matrix of sly type. Let €,(1 = p = N) be
the orthonormal basis of RY with the inner product (e,l€,) = d,,,. Let us
set €, = €, — € where € = SN e Let a, (1 £ p < N —1) the simple
root : oy, = €, — €,41. The type sly weight lattice is the linear span of €,,
P = Zi\[:—ll Z€,. Let us set Py, Qq (o € P) by

[P, Qp] = (a|B), (o, € P). (24)

In what follows we deal with the bosonic Fock space Fjj, generated by
B2, (m > 0) over the vacuum vector |l, k), where I,k € P.

o i T Qi—iy /T
Fie=CUE 1, Fs higanlllL k), (1K) = VT Ve, 0y,

where

B7Jn|l>k> = Oa (m > 0)7 Pa|l,k> - <Oé

\Ez— Wk) 10, k).
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Free field realizations of £ (2), Fy(), Hj'(2) (1 £ j £ N ~ 1) are given by
By(z) = ¢ W (¢ 035V S

X 1 exp —%;W@%B%(q(%—lﬁz)_m 5, (25)

FJ(Z) = eiﬁQaj (q(%il)jz)\/rzlpaj‘i’ri;l

1 e
X @ exp ZEBTJn(q(Zﬁfl)jz)*m : (26)
m#0
1 2s P,. 1

_ [3 . _ 1
HF (q27"2) = 1= %%e Vi 2 (313 5y T VoD e

o _ngonlz[<r[—m1]§m]q3%(q(%_l)jz)_m 0

The free field realization for general level ¢ [17] is completely different from
those for level ¢ = 1.

3. Commuting operators

In this section we construct two classes of infinitely many commuting op-
erators Gy, [4] and Ts(z) [6].

3.1. Extended currents Ey(z), Fny(2)

In this section we introduce the extended currents En(z), Fn(z) [4]. Let us
set the extended current En(z), Fy(z) by the similar commutation relations
as the elliptic quantum group. The extended currents En(z), Fiv(2) satisfy
the following commutation relations.

[Uz—uﬁ—%]*

Ej(21)Ejt1(22) =

o fur —ug +1]F

By(a). FuCea)] = 2 (o o o) ] (4322) = Ol /o) (472 2)),
(4,k € Z/NZ),
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and other defining relations of the elliptic quantum group, in which the

suffix j, k should be understood as mod. N. Free field realizations of the
1 1

extended currents En(z), Fn(z) and Hy(q2 "2) = Hy(q2 "z) are given

by

En(z) = e ViaQay (25-N )~V Py tar /7 Pa o

x rexp | — mZ#) ;MBWJ\{(Q%—NZ)—W 3 (28)

Fn(z) = ei\/r;rl%” (qQS_Nz)\/T;rlPENJFT{r1 z—\/TZIPelJrT;Tl

1
X :exp [ — Z %B%(q%_Nz)_m 5 (29)
m#0

3 1 1 1 1
Hﬁ(qéfrz) — q2(N72S)e_\/%QO¢N (qZSfNZ)_ﬁPEN‘f‘WZWP%l"FW

X 1 exp —%;&BQ(Q%NZ)”% T (30)

3.2. Extended currents V(z),U(z)

In this section we introduce the extended currents V(z),U(z) [5, 13]. In
this section we consider the case s = N. For our purpose it is convenient
to introduce

Bj(z) = Bjlq72), Fj(z)=Fi(g72), 1Sj<N-1).

The extended currents U(z), V(z) are given by the following commutation
relations.

i 1
= |ug —u1 + 5| Ei(z2)V(21),

1" —
|:U1 — U + :| V(Zl)El (ZQ 5

)
2
Ej(z1)V(22) = ‘_/(22)Ej(21) (2 <j<N),
U(21)F (22) 1
)

(

(
(z1)F1(z2) = |ug — w1 — 5 | Fi(z)U(z1),  (33)

(

1
- 2_
Fj(zl)U(zg = U(ZQ)FJ‘(ZI) (2 g j § N) 34)
UV () = (a1 /22) 7 0 22U () U ), (3
VeV () = (/) 710 CEE Y )y G, (30)
UV () = =5 22008 ), (37)
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where we set
B (q22.q2 ) (q2N+2r 2,. q2r7q2N)oo 28
p(z) = (q2r2 q27" ) oo (@2 7, ) s (38)
. B (Z‘q ) ( 2N+2r— 22’ q2r*,q2N)oo 29
pr(z) = (q2'rz 2 ) oo (@22 2 PN o (39)
The free field realizations of U(z),V (z) are given by
r— _ s fr=1n_  _ [Jr=1p 1
U(z) =z = e Z\/ P @y, \/ PP exp [ - Z —pLzmm | (40)
m#0 m
V(z) = 2500 & V1% /P
crep (3L Mgy (41)
P 2 [,
m

3.3. Integral of motion

In this section we give a class of infinitely many commuting operators G,,,
(m € N) that we call the integral of motion [4]. In this section we consider
the case 0 < Re(s) < N. Let us set the integral of motion G,,, (m € N) by

integral of the currents.

%‘/ /HH ’ﬂ“)<W Fi(=)

tljlzj

x BB m(®) - Py () P () -

m

ﬁ H {ugt) — u,(:)} [u,(f) — ugt) — 1}

t=11<j<k<m

(N))

T e STTT [0 ™
t t+1 1 N
[T [ ™ 1= G TT [ =™+ 5
t=1 jk=1 k=1
N m
¢ (t+1)
<] 1> ! — o™y — Ve, (42)
t=1 | j=1
0 ® _ 2ul® . : ® _
ere we set z;° = ¢~7 . Here the integral contour encircles z; =0,

(1=t=< N;1=<j<m)in such a way that

g T2 (Y| < !z(t | < !q*“ﬁ*% VYL astsN -,

’q2—27\‘;’+2lrzk |<‘Z |<’C] N —2Ir (1)’

)
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for 1 < j,k < m and [ € N. Let us set the integral of motion G},, (m € N)
as similar way.

AR
g:n://HHé)El(zl )E1 (25 )El(z”}))

t=1j=1 %j

x Ey(2 D) Ea(257) - Ea(z?) - En(2")En(z{V) -+ En(2()

m m

ﬁ H [ugt) - u,(:)} * [u,(:) - ugt) n 1}*

t=11<j<k<m

N—-1 m m
s H [u§t) — u,(fﬂ) — %} H [ugl) - uéN) -1+ %}
t=1 j k=1 J,k=1

Here the integral contour encircles z](t) =0,(1=t< N;1<j<m)insuch
a way that

’q—2+2§+21r*21(€t+1)’ < \zj(.t)\ < ‘qzﬁs—er*Z]it+1)‘7 (1<t<N-1),
_2s * (1 N —2s_op* (1
g™ ¥ D) < 2] < g N ),

for1 < j,k<mandleN.

The integral of motion G, and G;;, commute with each other.

These commutation relations are shown by considering the Feigin-Odesskii
algebra [7]. When we take the limit r — oo, our integral of motion Gy,
becomes those of conformal field theory [9, 10]. In the limit » — oo, the
theta functions in integrand disappear, hence we know that elliptic defor-
mation is nontrivial. The integral of motion of Uj,(sl2) in general level ¢
is constructed in [18].

3.4. Vertex operator

In this section we introduce the vertex operator ®(®%)(z) that plays an
essential role in construction of the boundary transfer matrix Tp(z). In
this section we consider the case r =2 N + 2,(r € N) and s = N. Let’s
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recall sl weight lattice P = ny;ll Zg, introduced in previous section.
Let w, (1 £ p £ N — 1) be the fundamental weights, which satisfy

(O‘M‘WV) =Opw; (I=mrv=N-1).
Explicitly we set w, =Y/, &. For a € P we set a;, and a,, by
Quy =ay —ay, a,=(a+ple,), (pveP).

Here we set p = ij:_ll wy,. Let us set the restricted path PTt N by

N-1 N-1
PrJr_NZ{a: ZCMWH€P|CH € ZL,cy EO,ZCM <r—N}L
p=1 u=1

Fora € P!, condition0 < a,, <r, (1 < u<v < N-1)holds. We recall
elliptic Solutlons of the Yang-Baxter equation of face type. An ordered pair
(b,a) € P? is called admissible if and only if there exists p (1 < p < N)

such that b —a = €,. An ordered set of four weights (a,b,c,d) € P is
called an admissible configuration around a face if and only if the ordered
pairs (b,a), (¢,b), (d,a) and (c,d) are admissible. Let us set the Boltzmann

weight functions W < Z (Cll u) associated with admissible configuration

(a,b,c,d) € P*[19]. For a € P! and u # v, we set

< aatr 2:: a+6u u) = R(u), (45)
w( ++ R e o
MSE TIPS = =

The normalizing function R(u) is given by
(g2 +H2N-2

o1 (27 (2) = (4°2 4%, q ) %" " )oo
o(z) (@%2.6°", *N oo (@°N 2677, V) oo
(48)
Because 0 < ay,, <7 (1 £ p<v < N—1) holds for a € P ., the Boltz-

mann weight functions are well defined. The Boltzmann weight functions
satisfy the Yang-Baxter equation of the face type.
uy — U2>

S (2 m)w (e (s
ul—uQ>.(49)

g
wi( @9
u2> < c b

Y
=>w(fd
g

R(u) = z+
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We set the normalization function ¢(z) such that the minimal eigenvalue
of the corner transfer matrix becomes 1 [21]. The vertex operator &) ()
and the dual vertex operator ®*(*%)(z) associated with the elliptic quantum

group qu(ﬂ;), are the operators which satisfy the following commutation
relations,

B )0t = S w (Y

U — ul) ®(9) (29)®99) (21), (50)

g
00 (21)0 ) (z9) = > "W ( LT uz> *(®9) (2)9) (21), (51)
g
&*(00) (2)*(0:€) () = ; w ( ; Uy — ul) B*(09) () D*(9:9) ().
(52)
and the inversion relation,
(49 (2)9* 90 () = 5,4, (53)
We give free field realization of the vertex operator. In what follows we set
l=b+pk=a+p,(ac Pry,bePry )andm, =/r(r—1)P,, T, =

m,—my. We give the free field realization of the vertex operators Platena) (),
(1=p=N-1)[5] by

p—1
plateuma) (1) 7{ %H % i Fi(21)Fa(z2) -+ Fp1(2u-1)

PUFa (1) =

27mz]
— [u; — w1 + T
XH[] Jj—1 21Ju] (54)
j=1 [u] Uj—1 — E]
Here we set z; = ¢*% . We take the integration contour to be simple closed
curve that enc1rcles zj =0,¢""%%2;_1,(s € N) but not z; = ¢~ 17 %%z;_1, (s €

N) for 1 < j < p—1. The ®(@+€:9)(2) is an operator such that (@) (2)
Fik — Fik+e,- The free field realization of the dual vertex operator

*(@b) (2) is given by similar way [5]. The vertex operator ®(*%)(z) plays an
important role in construction of the correlation functions of the Uy p,(sln)
face model [5, 11].

3.5. Boundary transfer matrix

In this section we introduce the boundary transfer matrix Tp(z) [6], fol-
lowing theory of boundary Yang-Baxter equation [8, 16]. In this section we
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consider the case r 2 N +2,(r € N) and s = N. An order set of three
weights (a,b,g) € P3 is called an admissible configuration at a boundary
if and only if the ordered pairs (g,a) and (g,b) are admissible. Let us set
a
the boundary Boltzmann weight functions K < g

u) for admissible
b

weights (a, b, g) as following [15].

a
K| a+é€,
b

a,b-

0] = e 2 h(z) [C_“][al,u+6+u]5
h(z—1) [c+ ul[a1,, + ¢ — u]

(55)

In this paper, we consider the case of continuous parameter 0 < ¢ < 1. The
normalization function h(z) is given by following [6].

(@22 )22 0% g ) (627422267, ¢ ) oo
(qQT/ZQ; q27‘7 q4N)oo(q4N/Z27 q27” q4N)OO

(q2N+2C/z; q2r, q2N)Oo<q2r—20/z; q27"’ q2N)oo
(P22 2 2 N o (P2 o7, V) o

h(z) =

(56)

N I, ) )
y H (q27"+2N 2c 2‘“’]/2;q2r,QQN)OO(QQC+2QI"7/Z;qQT,QQN)oo
e (q27‘+2N—26—2a1,]’—2/z; q2r’ q2N)oo(q2c+2+2a1,j/Z; q2r’ qQN)OO
]:

The boundary Boltzmann weight functions and the Boltzmann weight func-
tions satisfy the boundary Yang-Baxter equation [8].
(&
U1> K( d U2>
g

g
ZW(Z i: ul—uz)W(; ;l ul—i-ug)K(f
fi9 a
Je( o))
Ul K b u .
a

c d c f ¢
:ZW(f e U17'U42>W<b g U1+U2>K<f
f9 g
(57)
We set the normalization function h(z) such that the minimal eigenvalue
of the boundary transfer matrix Tp(z) becomes 1. We define the boundary

transfer matrix T(z) for the elliptic quantum group Uq,p(%).

N a
TB(Z) _ Z q)*(a,a—&—Eu) (Z—I)K < a+e,
pn=1

u) Ot (z). (58)

a

The boundary T5(z) commute with each other.

[Tp(z1),Tp(22)] =0, for any z1, 2o. (59)
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This commutativity is consequence of the commutation relations of the
vertex operators (50), (51), (52), and boundary Yang-Baxter equation (57).

4. Diagonalization

In this section we diagonalize the boundary transfer matrix T(z), using
free field realization of the vertex operators [6, 5, 13]. In this section we
consider the case r 2 N +2, (r € N) and s = N.

4.1. Boundary state
We call the eigenvector |B) with the eigenvalue 1 the boundary state.
Tg(2)|B) = |B). (60)
We construct the free field realization of the boundary state |B), analyz-
ing those of the transfer matrix Tp(z). The free field realization of the
boundary state |B) is given as following [6].
|B) = e”'|k, k). (61)
Here we have set
1 1 [rm] 1
F=-2 — LM . (m)B’, B* + —D;(m)3".,,,,
22 Zm[(r—l)m]q J,k( ) m§>:0j§::1m J( )
(62)
where

i—N—1)m

(¥ — ym/2ylrm/2)q
[(7" - 1)m/2]q
qU=I™[(—r + 2y ; + 2¢ — j + 2)m],
[(r = D)m]q

[m]qq(r—2c+2j—2)m = —2mmy g,

((r — 1), ,;;q
¢ N [(r — 21y vy — 2¢+ N — 1)m],
[(r = Dyml, |

D; (m) = =0,

_l’_

+

L(m) = 2 ? — I ;(m) (

H
IA
<
IA
o
IA
=
!
Z
=)
N
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4.2. Excited states

In this section we construct diagonalization of the boundary transfer ma-
trix Tp(z) by using the boundary state |B) and type-II vertex operator

¥*(%:9)(2). Let us introduce type-II vertex operator W*(:®(z) [13] by the
following commutation relations,

*(a,b) *bC * a g
GH@0) (5 ) W*(0:0) () ZW(bc

ug — u2> P*a.9) (22)\11*(9@(21)7

(65)
B4 (2 )W ) (29) = x(22/21) W* D (22) D14 (2y), (66)
0D ()W 0D (25) = y(21/20) WOV (2)@*ED (5, (67)

L (—aqz)

where we have set x(z) = z ©_on(—qz~ 1)
q

and W*(% g
C

u) is obtain-
‘)
defined in (45), (46), (47). Let usset L =b+p,k=a+p, (a € Pl \,b €

Pt v 1). The free field realization of the type-II vertex operators ¥ Z(b’ )( ),
(1< =N —1) are give by

ed by substitution r — 7* of the Boltzmann weight functions W ( Z g

\I,*(b+q, )( 2 1)

pn—1
dz; _
W) (5 % j{H LV (20)E1(21)Ea(22) -+ Ep1(21)

2miz;

% H [u] _ Uj_ 2 +7T.7 ;U‘] ) (68)
j=1 [uj —Uj-1 + 5]

We take the integration contour to be simple closed curve that encircles z; =
0,g 1422 1, (s € N) but not z; = ¢! 22,1, (s e N) for 1 <j < pu—1.
The U*(+€w) () is an operator such that W*O+ewb) (2) : 7, — Fiye, k- We
introduce the vectors (1,82, -+, M) pr oy uns (1 S pias o, -+ s o S N).

’617 527 R} £M>M17,U«27'" SHA
— P (bHEuy HEug ety bHEy +"'+€HM)(£1) X o

X e \I}*(b+gl-‘Mfl+€“M’b+€“M)(fol)\I/*(bJ'_E”M’b) (&m)|B). (69)
We construct many eigenvectors of T5(z).

( )’517 527 T 7£M>#1,#2,"' M
M
H (&/2)x(1/&2) 1€, 82,7+ s €M) pa iz oo sns - (70)
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The vectors |£1, &2, -+, M) 1 o, uns 2r€ the basis of the space of the state

of the boundary qup(%) face model [11, 12, 6]. It is thought that our
method can be extended to more general elliptic quantum group Uy ,(g).
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