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Abstract

Adeles are infinite sequences which contain real and p-adic numbers for all primes p.
They unify real and p-adic numbers, giving possibility to trait them simultaneously
at an equal footing. Adelic analysis provides tools to extend some usual models
with real (and complex) numbers by adding p-adic counterparts. We briefly review
basic properties of adeles and their applications in p-adic mathematical physics.
In particular, many adelic product formulas are presented.

1. Introduction

p-Adic numbers are invented by Kurt Hansel in 1897. Ideles and adeles are
introduced in the 1930s by Claude Chevalley and André Weil, respectively.
p-Adic numbers and adeles have many applications in mathematics, e.g.
in representation theory, algebraic geometry and modern number theory.
Since 1987, p-adic numbers and adeles have been used in construction of
many models in modern mathematical physics (and related topics), what
resulted in emergence of p-adic mathematical physics and its gradual de-
velopments. Here we consider some adelic tools in p-adic mathematical
physics.

2. Adeles

On the field Q of rational numbers any non-trivial norm is equivalent either
to the usual absolute value |·|∞ or to a p-adic absolute value |·|p (Ostrowski
theorem). For a rational number x = pν a

b , where integers a and b 6= 0 are
not divisible by prime number p, by definition p-adic absolute value is |x|p =
p−ν and |0|p = 0. This p-adic norm is a non-Archimedean (ultrametric)

∗ The work on this article was partially supported by the Ministry of Education and
Science, Serbia, under contract No 174012. Also, this work was partially supported by
ICTP–SEENET-MTP project PRJ-09 “Cosmology and Strings ”, Nis, Serbia.

† e-mail address: dragovich@ipb.ac.rs

207



208 Branko Dragovich

one, because |x + y|p ≤ max{|x|p , |y|p}. As completion of Q gives the field
Q∞ ≡ R of real numbers with respect to the absolute value | · |∞, by the
same procedure one gets the field Qp of p-adic numbers ( for any prime
number p = 2, 3 , 5 · · · ) using p-adic norm | · |p. Any number x ∈ Qp has
its unique canonical representation

x = pν(x)
+∞∑

n=0

xn pn , ν(x) ∈ Z , xn ∈ {0, 1, · · · , p− 1}, x0 6= 0. (1)

Real and p-adic numbers, as completions of rational numbers, are unified
in the form of adeles. An adele α is an infinite sequence

α = (α∞, α2, α3, · · · , αp , · · · ) , α∞ ∈ R , αp ∈ Qp , (2)

where for all but a finite set P of primes p one has that αp ∈ Zp = {x ∈
Qp : |x|p ≤ 1}. Elements of Zp are called p-adic integers and they have
ν(x) ≥ 0 in (1). The set AQ of all adeles, related to Q, can be presented as

AQ =
⋃

P
A(P) , A(P) = R×

∏

p∈P
Qp ×

∏

p6∈P
Zp . (3)

Endowed with componentwise addition and multiplication AQ is the adele
ring.

The multiplicative group of ideles A×Q is a subset of AQ with elements
η = (η∞ , η2 , η3 , · · · , ηp , · · · ) , where η∞ ∈ R× = R \ {0} and ηp ∈ Q×p =
Qp \ {0} with the restriction that for all but a finite set P one has that
ηp ∈ Up = {x ∈ Qp : |x|p = 1}. Up is a multiplicative group of p-adic units.
Thus the whole set of ideles, related to Q× = Q \ {0}, is

A×Q =
⋃

P
A×(P), A×(P) = R× ×

∏

p∈P
Q×p ×

∏

p 6∈P
Up . (4)

A principal adele (idele) is a sequence (x, x, · · · , x, · · · ) ∈ AQ , where
x ∈ Q (x ∈ Q×). Q and Q× are naturally embedded in AQ and A×Q ,
respectively. By concept of the principal adeles one straightforwardly gen-
eralizes rational numbers in such way that one takes into account all their
nontrivial norms. Adeles are such generalization of principal adeles that it
provides possibility to have some well-defined mathematical structures.
Let P be set of all primes p. Denote by Pi , i ∈ N, subsets of P. Let us
introduce an ordering by Pi ≺ Pj if Pi ⊂ Pj . It is evident that A(Pi) ⊂
A(Pj) when Pi ≺ Pj . Adelic topology in AQ is introduced by inductive
limit: AQ = lim indPA(P). A basis of adelic topology is a collection of
open sets of the form V (P) = V∞ ×∏

p∈P Vp ×
∏

p6∈P Zp , where V∞ and
Vp are open sets in R and Qp , respectively. A sequence of adeles α(n) ∈ AQ
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converges to an adele α ∈ AQ if (i) it converges to α componentwise and
(ii) if there exist a positive integer N and a set P such that α(n), α ∈ A(P)
when n ≥ N . In the analogous way, these assertions hold also for idelic
spaces A×(P) and A×Q. AQ and A×Q are locally compact topological spaces.

There are adelic-valued and complex-valued functions of adelic arguments.
For various mathematical aspects of adeles and their functions one can use
books [1, 2, 3].

3. p-Adic and adelic models

The field Q of rational numbers is dense not only in R but also in Qp. Some
algebraic equations have solutions in Q if and only if they have solutions
in R and all Qp (Hasse local-global principle). This gives rise to successful
application of adeles in modern number theory and algebraic geometry.
What about application of p-adic numbers and adeles in physics? Recall
that measuring of physical quantities is practically related to measurement
of distances and it is in agreement with the Archimedean axiom. As a result
of measurements one obtains some rational numbers with distance between
them induced by usual absolute value | · |∞. There are no p-adic numbers
as result of measurements. Hence, the corresponding mathematical models
have been mainly considered using real and complex numbers. However,
p-adic numbers and adeles may play very important role in deeper under-
standing of physical phenomena, as well as in appropriate description of
some sectors of the life science.
The first significant employment of p-adic numbers in mathematical physics
started in 1987 by successful construction of p-adic string amplitudes, which
have p-adic valued world-sheet and real-valued momenta. Thus in p-adic
systems there is something which describes by p-adic numbers and some
properties which can be measured and expressed by real rational numbers.
Since 1987, many p-adic models have been constructed as the corresponding
counterparts of the real models. Such real and p-adic models start with the
same form and can be treated simultaneously by adelic tools. For an early
review of p-adic and adelic models we refer to [4, 5].
Especially adelic products have attracted much attention. They are of the
form

φ∞(x1 , · · · , xn ; a1 , · · · , am)
∏

p∈P
φp(x1 , · · · , xn ; a1 , · · · , am) = C , (5)

where xi ∈ Q , aj ∈ C , φ∞ and φp are real or complex valued functions,
and C is a constant (often C = 1). It is obvious that expressions of the
form (5) connect real and p-adic characteristics of the same object at the
equal footing. Moreover, the real quantity φ∞(x1 , · · · , xn ; a1 , · · · , am) can
be expressed as product of all p-adic inverses. This can be of practical
importance when functions φp are simpler than φ∞, but may also lead to
more profound understanding of physical reality.
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To illustrate formula (5) let us first present two very simple examples:

|x|∞ ×
∏

p∈P
|x|p = 1 , if x ∈ Q× , and χ∞(x)×

∏

p∈P
χp(x) = 1 , if x ∈ Q ,

(6)
where χ∞(x) = exp(−2πix) and χp(x) = exp 2πi{x}p are real and p-adic
additive characters, respectively, and {x}p denotes the fractional part of
x. It follows from (6) that d∞(x, y) =

∏
p∈P d−1

p (x, y), where d∞(x, y) =
|x − y|∞ and dp(x, y) = |x − y|p, i.e. the usual distance between any two
rational points can be regarded through product of the inverse p-adic ones.
One can also write χ∞(ax+bt) =

∏
p∈P χp[−(ax+bt)] when a , b , x , t ∈ Q,

and consider a real plane wave as composed of p-adic plane waves.
Let us also notice some adelic products related to number theory:

λ∞(x)
∏

p∈P
λp(x) = 1 ,

(x, y

∞
) ∏

p∈P

(x, y

p

)
= 1 , (7)

where x is presented by (1) and

λp(x) =





1, ν(x) = 2k , p 6= 2 ,√(
−1
p

)(
x0
p

)
, ν(x) = 2k + 1 , p 6= 2 ,

exp [πi(x1 + 1/4)] , ν(x) = 2k , p = 2 ,
exp [πi(x2 + x1/2 + 1/4)] , ν(x) = 2k + 1 , p = 2 ,

(8)

λ∞(x) = exp
(
− πi

4
sgnx

)
,

(x, y

∞
)

=
{ −1, x < 0, y < 0 ,

1, otherwise ,
(9)

(
x
p

)
and

(
x,y
p

)
are Legendre and Hilbert symbols [5], respectively.

Gauss integrals satisfy adelic product formula [6]
∫

R
χ∞(a x2 + b x) d∞x

∏

p∈P

∫

Qp

χp(a x2 + b x) dpx = 1 , a ∈ Q× , b ∈ Q ,

(10)
what follows from
∫

Qv

χv(a x2 + b x) dvx = λv(a) |2 a|−
1
2

v χv

(
− b2

4a

)
, v = ∞ , 2 , · · · , p · · · .

(11)
These Gauss integrals apply in evaluation of the Feynman path integrals

Kv(x′′, t′′; x′, t′) =
∫ x′′,t′′

x′,t′
χv

(
− 1

h

∫ t′′

t′
L(q̇, q, t) dt

)
Dvq , (12)
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for kernels Kv(x′′, t′′; x′, t′) of the evolution operator in adelic quantum me-
chanics [7] for quadratic Lagrangians. In the case of Lagrangian L(q̇, q) =
1
2

(
− q̇2

4 − λ q + 1
)

for the de Sitter cosmological model (what is similar to
a particle with constant acceleration λ) one obtains [8, 9]

K∞(x′′, T ;x′, 0)
∏

p∈P
Kp(x′′, T ; x′, 0) = 1 , x′′, x′, λ ∈ Q , T ∈ Q× , (13)

where

Kv(x′′, T ; x′, 0) = λv(−8T ) |4T |−
1
2

v χv

(
−λ2 T 3

24
+[λ (x′′+x′)−2]

T

4
+

(x′′ − x′)2

8T

)
.

(14)
The adelic wave function for the simplest ground state has the form

ψA(x) = ψ∞(x)
∏

p∈P
Ω(|x|p) =

{
ψ∞(x), x ∈ Z,
0, x ∈ Q \ Z ,

(15)

where Ω(|x|p) = 1 if |x|p ≤ 1 and Ω(|x|p) = 0 if |x|p > 1. Since this
wave function is non-zero only in integer points it can be interpreted as
discreteness of the space due to p-adic effects in adelic approach.
The Gel’fand-Graev-Tate gamma and beta functions [4, 5] are:

Γ∞(a) =
∫

R
|x|a−1

∞ χ∞(x) d∞x =
ζ(1− a)

ζ(a)
, (16a)

Γp (a) =
∫

Qp

|x|a−1
p χp(x) dpx =

1− |p|1−a
p

1− |p|ap
, (16b)

B∞(a, b) =
∫

R
|x|a−1

∞ |1− x|b−1
∞ d∞x = Γ∞(a) Γ∞(b) Γ∞(c) , (17)

Bp(a, b) =
∫

Qp

|x|a−1
p |1− x|b−1

p dpx = Γp(a) Γp(b) Γp(c) , (18)

where a, b, c ∈ C with condition a + b + c = 1 and ζ(a) is the Riemann zeta
function. With a regularization of the product of p-adic gamma functions
one has adelic products:

Γ∞(u)
∏

p∈P
Γp(u) = 1 , B∞(a, b)

∏

p∈P
Bp(a, b) = 1 , (19)

where u 6= 0, 1 , u = a, b, c , a + b + c = 1. It is worth noting now
that B∞(a, b) and Bp(a, b) are the crossing symmetric standard and p-adic
Veneziano amplitudes for scattering of two open tachyon strings. There are
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generalizations of the above product formulas to integration on quadratic
extensions of R and Qp, as well as on algebraic number fields, and they
include scattering of closed strings [5, 10].
Introducing real, p-adic and adelic zeta functions as

ζ∞(a) =
∫

R
exp (−π x2) |x|a−1

∞ d∞x = π−
a
2 Γ

(a

2

)
, (20)

ζp(a) =
1

1− |p|p

∫

Qp

Ω(|x|p) |x|a−1
p dpx =

1
1− |p|ap

, Re a > 1 , (21)

ζA(a) = ζ∞(a)
∏

p∈P
ζp(a) = ζ∞(a)ζ(a) , (22)

and
ζA(1− a) = ζA(a) , (23)

where ζA(a) can be called adelic zeta function, from (23) one obtains func-
tional equation for the Riemann zeta function. Let us note that exp (−π x2)
and Ω(|x|p) are analogous functions in real and p-adic cases. Adelic har-
monic oscillator [7] has connection with the Riemann zeta function. Namely,
the simplest vacuum state of the adelic harmonic oscillator is the following
Schwartz-Bruhat function:

ψA(x) = 2
1
4 e−π x2∞

∏

p∈P
Ω(|xp|p) , (24)

whose the Fourier transform

ψA(k) =
∫

χA(k x) ψA(x) = 2
1
4 e−π k2∞

∏

p∈P
Ω(|kp|p) (25)

has the same form as ψA(x). The Mellin transform of ψA(x) is

ΦA(a) =
∫

ψA(x) |x|a d×Ax =

∫

R
ψ∞(x) |x|a−1d∞x

∏

p∈P

1
1− |p|p

∫

Qp

Ω(|x|p)|x|a−1 dpx =
√

2Γ
(a

2

)
π−

a
2 ζ(a)

(26)
and the same for ψA(k). Then according to the Tate formula one obtains
(23). It is remarkable that such simple physical system as harmonic oscil-
lator is related to so significant mathematical object as the Riemann zeta
function.
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Adelic properties of dynamical systems, which evolution is governed by
linear fractional transformations [11]

f(x) =
ax + b

cx + d
, a, b, c, d,∈ Q , ad− bc = 1 (27)

is also investigated. It is shown that rational fixed points are p-adic in-
different for all but a finite set P of primes, i.e. only for finite number of
p-adic cases a rational fixed point may be attractive or repelling.
Recently [12] wavelet analysis was considered on adeles.

4. Concluding remarks

We presented a brief review of some basic adelic tools in p-adic mathemat-
ical physics. We considered above simple cases of adeles AQ consisting of
completions of Q. There is also ring of adeles AK related to the comple-
tions of any global field K. There is a straightforward generalization of AQ
to the n-dimensional vector space An

Q =
∏n

i=1A
(i)
Q (see, e.g. [1]). Adelic

algebraic group G(AK) is an adelization of a linear algebraic group G over
completion fields Kv of a global field K [1, 2, 3].
For a more detail insight into this attractive and promising field of inves-
tigations let us also mention a few additional topics. Adelic quantum cos-
mology (for a review, see [9]) is an application of adelic quantum mechanics
[7] to explore very early evolution of the universe as a whole. Adelic path
integral [13] is a suitable extension of the standard Feynman path integral
and serves to describe quantum evolution of adelic objects. Conjecture on
the adelic universe with real and p-adic worlds, as well as p-adic origin of
dark matter and dark energy are discussed in [9].
Adelic summability [14] of perturbation series is an approach to summation
of divergent series in the real case when they are convergent in all p-adic
cases. In a few papers [14], rational sums are obtained for many p-adic
series with factorials.
Use of effective Lagrangians on real numbers for p-adic strings has been
very efficient in their application to string theory and cosmology. Paper
[15] is an attempt towards effective Lagrangian for adelic strings without
tachyons. Further development of adelic analysis and, in particular, adelic
generalized functions [6, 16, 17] is one of mathematical opportunities. Let
us also mention work towards adelic superanalysis [18].
One can conclude that there has been a successful application of adeles in
p-adic mathematical physics and that one can expect a growing interest in
their further mathematical developments as well as in applications. Recent
review of p-adic mathematical physics is presented in [19].

References

[1] I.M. Gel’fand, M.I. Graev and I.I. Pyatetskii-Shapiro, Representation
Theory and Automorphic Functions (Saunders, London, 1966).



214 Branko Dragovich

[2] A. Weil, Adeles and Algebraic Groups (Birkhauser, Basel, 1982).
[3] V.P. Platonov and A.S. Rapinchuk, Algebraic Groups and Number

Theory (Nauka, Moskva, 1991) [in Russian].
[4] L. Brekke and P.G.O. Freund, “p-Adic numbers in physics”, Phys.

Reports 233 (1993) 1-66.
[5] V.S. Vladimirov, I.V. Volovich and E.I. Zelenov, p-Adic Analysis and

Mathematical Physics (World Scientific, Singapore, 1994).
[6] B. Dragovich, “On generalized functions in adelic quantum mechan-

ics”, Integral Transform. Spec. Funct. 6 (1998) 197 - 203; arXiv:math-
ph/0404076.

[7] B. Dragovich, “Adelic model of harmonic oscillator”, Theor. Math.
Phys. 101 (1994) 349-359, hep-th/0402193; “p-Adic and adelic quan-
tum mechanics”, Proc. V.A. Steklov Inst. Math. 245 (2004) 72-85;
arXiv:hep-th/0312046.
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