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Abstract
We give a comparison of the non-commutativity parameters for the
space-time coordinates in the theories of the bosonic string moving in
the constant and weakly curved background. We explain and resolve
the discrepancies that exist in the literature regarding the appearance
of the momenta dependent terms.

1. Introduction

We will investigate the non-commutativity [1]-[6] of the open string coordi-
nates in the background which is the solution of the space-time equations
of motion. Working with general solution for the metric tensor Gµν(x) and
Kalb-Ramond field Bµν(x) would be very complicated. In the great major-
ity of papers the simplest solution, the flat background, Gµν = const and
Bµν = const, is used. A particular solution of the space-time equation of
motion is weakly curved background [2] with Gµν = const and linearly de-
pendent Kalb-Ramond field Bµν = bµν + 1

3Bµνρx
ρ, where the field strength

Bµνρ is infinitesimally small.
Different methods, addressing the problem of weakly curved background
do not give the same form of the noncommutativi- ty parameter. We
resolve these discrepancies, by obtaining the complete form of the non-
commutativity parameter and by explaining their roots.
Following [3, 4] we develop the canonical method in which we treat the
boundary conditions (obtained from the string action principle) as con-
straints. By requiring the consistency of boundary conditions as con-
straints, we obtain the infinite set of constraints. Instead of working with
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them explicitly, we form only one σ-dependent constraint at each string
endpoint. They are of the second class and their solution allows us to
express the initial canonical variables in terms of the effective ones.
We investigate the non-commutativity of the space-time coordinates xµ

which is nontrivial because xµ depends on both effective coordinates and
momenta.

2. Definition of the model

The action, describing the open string propagation in the curved back-
ground [5] has a form

S = κ

∫

Σ
d2ξ

√−g
[gαβ

2
Gµν(x) +

εαβ

√−g
Bµν(x)

]
∂αxµ∂βxν , (1)

where xµ(ξ), µ = 0, 1, ..., D − 1 are the coordinates of the D-dimensional
space-time, and ξα(ξ0 = τ, ξ1 = σ) parametrize 2-dim world-sheet, with
intrinsic metric gαβ(ξ) (g = detgαβ).
Due to the quantum world-sheet conformal invariance, the background
fields: space-time metric Gµν(x) and the Kalb-Ramond antisymmetric field
Bµν(x) must satisfy the space-time equations of motion

Rµν − 1
4
BµρσB ρσ

ν = 0, DρB
ρ
µν = 0, (2)

where Bµνρ = ∂µBνρ + ∂νBρµ + ∂ρBµν is the field strength of Bµν , Rµν
is the Ricci tensor and Dµ is covariant derivative. We will consider the
following solution

Gµν = const, Bµν = bµν +
1
3
Bµνρx

ρ, (3)

where the field strength of the Kalb-Ramond field Bµνρ is constant and
infinitesimally small. We will work up to the first order in Bµνρ so that
weakly curved background defined in (3) is the solution of equation (2).
From the action principle

δS =
∫

dξ2
[ ∂L
∂xµ

− ∂τ
∂L
∂ẋµ

− ∂σ
∂L
∂x′µ

]
δxµ +

∫
dτ

[ ∂L
∂x′µ

δxµ
]∣∣∣

π

0
, (4)

we obtain the equation of motion

ẍµ = x′′µ − 2Bµ
νρẋ

νx′ρ, (5)

and boundary conditions
[
γµ

0 δxµ

]∣∣∣
σ=0,π

= 0, γµ
0 = x′µ − 2(G−1B)µ

ν ẋ
ν . (6)
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3. The Boundary conditions as constraints

The closed string fulfills the boundary condition because xµ(0) = xµ(π).
For the open string we can impose either Neumann boundary condition,
where

[
δxµ

]∣∣∣
0
,
[
δxµ

]∣∣∣
π

are arbitrary i.e. string end-points can move freely,
which produces

γ0
µ

∣∣∣
σ=0

= 0, γ0
µ

∣∣∣
σ=π

= 0, (7)

or the Dirichlet boundary condition

xµ
∣∣∣
σ=0

= const, xµ
∣∣∣
σ=π

= const, (8)

where the edges of the string are fixed.

We impose the Neumann boundary condition, and we treat γµ
0

∣∣∣
σ=0,π

as con-

straints. Because they must be conserved in time we obtain the secondary
constraint and consecutively the infinite set of constraints

γn
µ

∣∣∣
σ=0,π

= 0, γn
µ ≡ γ̇n−1

µ , (n ≥ 1). (9)

Their explicit form is

γ2n
µ = γ(2n)

µ − 2
3
Bµαβ

n−1∑

k=0

αk
2nQ

(2n−2k−1)αβ
k

+ 4b ν
µ Bναβ

n−1∑

k=0

αk
2nR

(2n−2k−2)αβ
k , (n ≥ 1) (10)

γ2n+1
µ = γ̃(2n+1)

µ − 2
3
Bµαβ

n−1∑

k=0

αk
2nR

(2n−2k−1)αβ
k

+ 4b ν
µ Bναβ

n∑

k=0

αk
2n+2Q

(2n−2k)αβ
k , (n ≥ 1)

where we defined

γµ = Gµνx
′ν − 2Bµν ẋ

ν , γ̃µ = Gµν ẋ
ν − 2Bµνx

′ν

Qαβ
n = ẋ(n)αx(n+1)β, Rαβ

n = x(n+2)αx(n+1)β + ẋ(n)αẋ(n+1)β.
(11)

Instead of working with this infinite set of constraints, we form σ-dependent
constraint at σ = 0

Γµ(σ) ≡
∞∑

n=0

σ2n

(2n)!
γµ

2n

∣∣∣
σ=0

+
∞∑

n=0

σ2n+1

(2n + 1)!
γµ

2n+1

∣∣∣
σ=0

= Γµ
S(σ)+Γµ

A(σ). (12)
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Introducing Ω-even and odd variables (Ω : σ → −σ)

qµ = 1
2(1 + Ω)xµ, q̄µ = 1

2(1− Ω)xµ,

pµ = 1
2(1 + Ω)πµ, p̄µ = 1

2(1− Ω)πµ,
(13)

and applying the method of Refs. [3, 4], we obtain the compact form of the
symmetric and antisymmetric part of the constraint

ΓS
µ(σ) = Gµν q̄

′ν − 2bµν q̇
ν − 2

3
Bµνρ

[
q̇νqρ +

1
2
Q̇νq′ρ +

3
2

˙̄qν
q̄ρ

]

+ 2b ρ
µ Bραβ

[
q′αq̄β + Q̇α ˙̄qβ

]
, (14)

ΓA
µ (σ) = Gµν ˙̄qν − 2bµνq

′ν − 2
3
Bµνρ

[
q′νqρ +

1
2
Q̇ν q̇ρ +

3
2
q̄′ν q̄ρ

]

+ 2b ρ
µ Bραβ

∂

∂σ

[
Q̇αq̄β

]
,

where Qµ(σ) =
∫ σ
0 dηqµ(η).

4. From Lagrangian to Hamiltonian form of constraints

Both σ-dependent constraints (14) have a form

Γµ(σ) = Γµ(q, q̇, q′, q̄, ˙̄q, q̄′, Q̇). (15)

Notice that they depend not only on Ω-even and odd variables qµ and q̄µ,
which would be expected at the first glance but on Q̇, also.
We introduce canonical momenta corresponding to coordinate xµ

πµ = κ(Gµν ẋ
ν − 2Bµνx

′ν), (16)

and rewrite these constraints in the canonical form

Γµ(σ) = Γµ(q, q′, p, q̄, q̄′, p̄, P ), (17)

where Pµ(σ) =
∫ σ
0 dηpµ(η). Explicitly, we have [4]

ΓS
µ(σ) = GE

µν [q]q̄
′ν− 2

κ
B ν

µ [q]pν−
[
2(bh + hb)− 6h(bq)− 24bh(bq)b

]′
µν

q̄ν

− 1
κ

[
h− 12bh(bq)

]′ ν

µ
Pν− 3

κ

[
h̄ + 4bh(bq̄)

] ν

µ
p̄ν +

6
κ2

[
bh(p̄)

] ν

µ
Pν ,

(18)

and

ΓA
µ (σ) =

1
κ

p̄µ −
[
h̄− 12bh̄b− 4h(bq̄)b + 12bh(bq̄)

]
µν

q̄′ν

+
2
κ

[
3bh̄ + h(bq̄)

] ν

µ
pν +

2
κ

[
3bh̄− h(bq̄)

]′ν
µ

Pν − 1
κ2

h ν
µ (p)Pν ,

(19)
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where GE
µν(G,B) ≡ Gµν − 4Bµρ(G−1)ρσBσν is open string metric and

hµν(x) ≡ 1
3Bµνρx

ρ = 1
3Bµνρ(q + q̄)ρ ≡ hµν + h̄µν is infinitesimal.

The constraints are closed on themselves, because by definition

Γ̇µ = {Hc, Γµ(σ)} = Γ′µ(σ), (20)

and so there are no more constraints. They are of the second class

{Γµ(σ),Γν(σ̄)} = −κGE
µν [(q + 2bq̄ +

1
κ

P )(σ)]δ′(σ − σ̄) + · · · (21)

if the open string metric is regular, GE
µν [?] 6= 0.

5. The solution of the constraints and effective background

We are going to solve the second class constraints Γµ
S(σ) = 0, Γµ

A(σ) = 0.
We can express the Ω-odd variables in terms of the Ω-even ones q̄µ =
f(q, p, P ), p̄µ = f(p, P ). Explicitly, in the zero order in small parameter
Bµνρ we have

q̄′µ0 = −2θµν
0 pν → q̄µ

0 = −2θµν
0 Pν , p̄0

µ = 0, (22)

where θµν
0 ≡ − 1

κ(g−1)µρbρσ(G−1)σν and gµν = GE
µν(G, b).

In the first order in Bµνρ the solution obtained in Ref. [4] is equal to

xµ(σ) = qµ(σ) + q̄µ(σ)

= qµ(σ)−
∫ σ

0
dη

[
2θµν [q(η)]pν(η) + Λ′µν

− [q(η)]Pν(η)
]
,

πµ(σ) = pµ(σ) + p̄µ(σ)

= pµ +
[
Gb−1β(q̄)g−1

] ν

µ
pν , (23)

where we introduced the notation

Λµν
± [x] ≡ −1

κ
(G−1

E )µα[Bαβ ± 1
2
Gαβ ](G−1)βν ,

θµν(G,B) ≡ −1
κ

(G−1
E (G,B))µρBρσ(G−1)σν , (24)

βµν(q̄) = 2
[
bh̄b− 3b2h̄− 1

4
bh̄(b−1q̄) + 3b2h̄(b−1q̄)b

]
µν

.

We will call this case, when space-time metric is constant and Kalb-Ramond
field linear in coordinate (Bµνρ 6= 0, bµν 6= 0) the case III. In the case I,
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when both background fields are constant (Bµνρ = 0), the solution reduces
to that of Ref. [5]

xµ(σ) = qµ − 2θµν
0 Pν , πµ(σ) = pµ. (25)

In the case II, for infinitesimal Kalb-Ramond field (Bµνρ 6= 0, bµν = 0) the
solution reduces to that of Ref. [3]

xµ(σ) = qµ(σ)− 2
∫ σ

0
dσ0

(
θµν [q]pν +

1
2
θ′µν [q]Pν

)
(σ0),

πµ(σ) = pµ(σ)− θ ν
µ [p(σ)]Pν(σ). (26)

Substituting the solution (23) into the Hamiltonian we obtain the effective
Hamiltonian in terms of the effective canonical variables. Comparing it
with the initial Hamiltonian we find the effective background fields in the
case III

Gµν → GE
µν [q] ≡ Geff

µν [q]

Bµν(x) → [h̄ + 4bh̄b]µν + βA
µν(q̄) ≡ Beff

µν [q̄]. (27)

In both cases I and II the metric tensor remains constant Gµν → Gµν and
the effective Kalb-Ramond field does not appear Bµν → 0.

6. Non-commutativity of the closed string coordinate xµ

Let us analyze the results (23), (25) and (26). The space-time coordinates,
obviously do not commute, because they depend on both effective coordi-
nates qµ and momenta pµ. Using the Poisson bracket

{qµ(σ), pν(σ̄)} = δµ
ν δS(σ, σ̄), δS(σ, σ̄) =

1
2
[δ(σ − σ̄) + δ(σ + σ̄)], (28)

we can investigate the form of the non-commutativity parameter for these
three solutions. From the solutions (25),(26) ,(23) omitting unphysical
terms we obtain respectively

{xµ(σ), xν(σ̄)} = 2θµν
0 θ(σ + σ̄), (29)

{xµ(σ), xν(σ̄)} =
{

θµν [q(σ)] + θµν [q(σ̄)]
}

θ(σ + σ̄), (30)

{xµ(σ), xν(σ̄)} =
[
Eµν(σ̄)− Eνµ(σ)

]
θ(σ + σ̄)

−
[
Iµν(σ̄) + Iνµ(σ)

]
θ(σ − σ̄), (31)
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where we introduced

Eµν [q, q̄] = θµν [q]− Iµν [q̄],

Iµν [q̄] = θµν
ρq̄

ρ − θµν
eff [q̄], (32)

θµν
eff = θµν(Geff , Beff ) = −1

κ

[
g−1Beff [q̄]g−1

]µν
,

and θµν
ρ ≡ θµα

0 θνβ
0 θαβρ = θµα

0 θνβ
0 (∂αθ−1

βρ + ∂βθ−1
ρα + ∂ρθ

−1
αβ ).

The essential difference between two cases in the weakly curved back-
grounds, is that in the case II the term θµν [q(η)] in the expression for xµ

is infinitesimal and in the case III it contains the finite constant part θµν
0 .

For bµν 6= 0 the Poisson bracket {q̄µ, q̄ν} can not be neglected and beside
the coordinate dependent term it produces two new terms which depend
on q̄µ

0 = −2θµν
0 Pν , (where Pν is the σ-integral of the effective momenta pν).

Separating center of mass variable xµ(σ) = xµ
cm +Xµ(σ), we obtain that in

the cases I and II the non-commutativity parameter is nontrivial only on
the string endpoints

{Xµ, Xν} = ∓θµν
0 , (Bµνρ = 0, bµν 6= 0)

{Xµ, Xν} = ∓θµν(q), (Bµνρ 6= 0, bµν = 0), (33)

for σ = 0, π respectively, while the interior of the string is commutative.
The term with θ(σ− σ̄) in (31), which is nontrivial in the case III, produces
the non-commutativity along the whole string

{Xµ(σ), Xν(σ̄)} =





−θµν [q(0)]− 2
π ?I

µν
cm, σ = σ̄ = 0

θµν [q(π)] + 2
π

?Iµν
cm, σ = σ̄ = π

(1− 2σ
π )Iµν(σ) + 2

π

[
?I

µν(σ)− ?I
µν
cm

]
, σ = σ̄ 6=

0, π{
Iµν(σ)− 1

π

[
σIµν(σ) + σ̄Iµν(σ̄)

]

+ 1
π

[
?I

µν(σ) + ?I
µν(σ̄)− 2?I

µν
cm

]}
, σ > σ̄

{
Iµν(σ̄)− 1

π

[
σIµν(σ) + σ̄Iµν(σ̄)

]

+ 1
π

[
?I

µν(σ) + ?I
µν(σ̄)− 2?I

µν
cm

]}
, σ < σ̄

,

(34)
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where

?I
µν(σ) =

∫ σ

0
dη Iµν(η), ?Iµν(σ) =

∫ π

σ
dη Iµν(η),

?I
µν
cm =

1
π

∫ π

0
dη ?I

µν(η), ?Iµν
cm =

1
π

∫ π

0
dη ?Iµν(η). (35)

In the case I the non-commutativity parameter is constant, in the case II it
is coordinate dependent and in the case III it is coordinate and momenta
dependent.

7. Discussion

We investigated different forms of non-commutativity relations between
space-time coordinates. It is well known that, the non-commutativity pa-
rameter is constant for flat background θµν = const. We showed that, in
the case of weakly curved background for bµν = 0 it depends on coordi-
nates only θµν(q), and for bµν 6= 0 on both coordinates and momenta. The
momenta dependent parameter has not been observed by the path inte-
gral method [2], but one part of our result has been obtained by canonical
approach [6].
We proved that the momenta dependent terms exist. Apart from the
term obtained in [6], we obtained additional term θµν

eff (q̄), (32) which de-
pends on the effective background fields in the same way as the initial
non-commutativity parameter depends on the initial background fields.
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