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Abstract

The paper intends to offer a general overview on what the concept
of integrability means for a nonlinear dynamical system and on how
the symmetry method can be applied for approaching it. After a
general part where key problems as direct and indirect symmetry
methods or an optimal system of solutions are tackled with, in the
second part of the lecture two concrete models of nonlinear dynamical
systems are effectively studied in order to illustrate how the procedure
is working. The two models are the 2D Ricci flow model coming from
general relativity and the 2D convective-diffusion equation . Part
of the results, especially the ones concerning the optimal systems of
solutions, are new ones.

PACS: 05.45.-a; 11.30.Na

Keywords: Lie symmetries, invariants, similarity reduction.

1. Integrability and symmetries. Key aspects.

1.1. The concept of integrability for dynamical systems
Dynamical systems described by nonlinear partial differential equations are
frequently used to model a wide variety of phenomena in physics, chemistry,
biology and other fields [1]. The modelling process includes to find solutions
of those partial differential equations. If these solutions should exist, the
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diffential system is said to be integrable. Sometime it is difficult to find a
complete set of solutions and it would be quite enough if one could decide on
the integrability of the system. There are many methods which can be used
to fulfill this aim: Hirota’s bilinear method, the Backlund transformation
method, the inverse scattering method, the Lax pair operator, the Painleve
analysis and others [2]. Each method has its own significant properties.
For example, while the Lax and the Painleve methods are mostly testing
the integrability, Hirota’s bilinear method is very efficient for the effective
determining of the multiple soliton solutions for a wide class of nonlinear
evolution equations [3]. As a conclusion, in order to decide that a nonlinear
differential equation is integrable, one of the following situations should
appear:

(i) the existence of a number of functionally independent first integrals/in-
variants equal to the order of the system in general and half of that
number for a Lagrangian system as a consequence of Liouville’s The-
orem;

(ii) the existence of a sufficient number of Lie symmetries able to reduce
the partial differential equation to an ordinary differential equation;

(iii) the possession of the Painlevé property [4].

In this paper the first two criteria will be investigated.

1.2. The symmetry method for solving dynamical systems

Many natural phenomena are described by a system of nonlinear partial
differential equations (pdes) which is often difficult to be solved analytically,
since there is no general theory for completely solving nonlinear pdes. One
of the most useful techniques for finding exact solutions for the dynamical
systems described by nonlinear pdes is the symmetry method. On the one
hand, we can consider the symmetry reduction of differential equations and
thus obtain classes of exact solutions. On the other hand, by definition, a
symmetry transforms solutions into solutions, and thus symmetries can be
used to generate new solutions from known ones.

Initially, the symmetry method for solving partial differential equations
was developed for what is currently known as the Lie (classical) symmetry
method (CSM). We shall present now a short introduction to this approach
[5].

Let us consider a n-th order partial differential system:

∆ν(x, u(n)[x]) = 0, (1)

where x ≡ {xi, i = 1, p} ⊂ Rp represent independent variables, while
u ≡ {uα, α = 1, q} ⊂ Rq dependent ones. The notation u(n)designates the
set of variables which includes u and the partial derivatives of u up to the
n-th order.
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The general infinitesimal symmetry operator has the form:

U =
p∑

i=1

ξi(x, u)
∂

∂xi
+

q∑

α=1

φα(x, u)
∂

∂uα
. (2)

The Lie symmetries represent the set of all the infinitesimal transforma-
tions which keep invariant the differential system. If we consider U (n) the
extension of the n-th order of (2), the invariance condition can be expressed
as:

U (n)[∆] p∆=0= 0. (3)

The characteristic equations associated to the general symmetry generator
(2) have the form:

dx1

ξ1
= ... =

dxp

ξp
=

du1

φ1
= ... =

duq

φq
. (4)

By integrating the characteristic system of ordinary differential equations
(4), the invariants Ir, r = 1, (p + q − 1) of the analyzed system can be
found.
There have been several generalizations of the Lie symmetry method which
include:

1) the non-classical symmetry method (NSM ) (also referred to as the
conditional method) of Bluman and Cole [6],

2) the direct method of Clarkson and Kruskal [7],
3) the differential constraint approach of Olver and Rosenau [8]
4) the generalized conditional symmetry method due to Fokas, Liu and

Zhdanov [9].

The direct method represents a direct, algorithmic, and non group theoretic
method for finding symmetry reductions. The relationship between this
direct method and the nonclassical method has been discussed in many
papers (e.g., [10], [11], [12] and [13]).
The differential constraint approach proposed a generalization of the non-
classical method. Its promoters have shown that the original system of
partial differential equations can be enlarged by appending additional differ-
ential constraints (side conditions), such that the resulting over determined
system of partial differential equations should be satisfying the compatibil-
ity conditions.
As well, in further efforts to find new symmetries of PDE’s which would lead
to additional new invariant solutions, much work has been done in the area
of higher-order symmetries. In particular, for an evolution equation in two
independent variables and one dependent variable, has been introduced in
[9] the method of generalized conditional symmetries (GCS) or conditional
Lie-Bäcklund symmetries.
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1.3. An optimal system of solutions

In general, when a differential equation should admit a Lie group Gr and
its Lie algebra Lr is of dimension r 〉1, we would to minimize the search
for invariant solutions by finding nonequivalent branches of solutions. This
should lead to the concept of optimal system.

It is well known that, for one-dimensional subalgebras, the problem of find-
ing an optimal system of subalgebras is essentially the same as the problem
of classifying the orbits of the adjoint transformations.

In Ovsiannikov [14], the global matrix of the adjoint transformations is used
for constructing the one-dimensional optimal system.

In Olver [5], a slightly different technique is employed: it consists in con-
structing a table, named the adjoint table, which would present the separate
adjoint actions of each element in Lr as it should act on all the other ele-
ments.

The procedure reported in Ruggieri and Valenti [15], is a mixture of the
above presented procedures and it consists in constructing the global matrix
of the adjoint transformations by the means of the adjoint table.

One of the advantages of symmetry analysis is the possibility to find so-
lutions of the original pdes by solving odes. These odes, called reduced
equations, are obtained by introducing suitable new variables, determined
as invariant functions, with respect to the infinitesimal generators.

On the basis of the infinitesimal generators of the optimal systems of Lie
algebras of the analyzed model, we can construct the reduced odes for the
given model and find exact solutions.

1.4. The inverse Lie symmetry problem

Usually, the direct symmetry problem of evolutionary equations is consid-
ered for the aim of finding their exact solutions. It is also known as the
classical symmetry method. Firstly, it consists in determining the Lie sym-
metry group corresponding to a given evolutionary equation. Then, using
the characteristic equations, could be obtained the Lie invariants associ-
ated to each symmetry operator. Further, these invariants, following the
reduced similarity procedure, should determine the reduced equation which
could be solve and generate the similarity solution for the analyzed model.

Also, the inverse symmetry problem [16] could be considered. Let us ask the
question: what is the largest class of evolutionary equations which would
be equivalent from the point of view of their symmetries?. So, this prob-
lem could be solved by imposing a concrete symmetry group to a general
analyzed model. With this condition, the general symmetry determining
equations could be solved and should allow us to determine all the concrete
models which admit the same Lie symmetry group.

Let us consider a 2D dynamical system described by a second order partial
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derivative equation of the general form:

ut = A(x, y, t, u)uxy + B(x, y, t, u)uxuy + C(x, y, t, u)u2x + D(x, y, t, u)u2y

+ E(x, y, t, u)uy + F (x, y, t, u)ux + G(x, y, t, u), (5)

with A(x, y, t, u), B(x, y, t, u), C(x, y, t, u), D(x, y, t, u), E(x, y, t, u),
F (x, y, t, u), G(x, y, t, u) arbitrary functions of their arguments.
The general expression of the Lie symmetry operator which leaves (5) in-
variant is:

U(x, y, t, u) = ϕ(x, y, t, u)
∂

∂t
+ ξ(x, y, t, u)

∂

∂x

+ η(x, y, t, u)
∂

∂y
+ φ(x, y, t, u)

∂

∂u
. (6)

Through the loss of the generality we could choose in the previous expres-
sion ϕ ≡ 1.Then, the generator (6) becomes:

U(x, y, t, u) =
∂

∂t
+ ξ(x, y, t, u)

∂

∂x
+ η(x, y, t, u)

∂

∂y
+ φ(x, y, t, u)

∂

∂u
. (7)

Following the symmetry theory [5], the following partial differential system
with 11 equations is obtained:

0 = ξu, 0 = ηu,

0 = Bηx −Dφ2u, 0 = Bξy − Cφ2u,

0 = Aηy − ηAy −Auφ + Aξx − ξAx + +2Dξy + 2Cηx −At,

0 = Aηx + 2Dηy − ηDy − ξDx −Duφ−Dt,

0 = −Aφ2u + Bξx −Bφu + Bηy −Bt −Bxξ −Buφ−Byη,

0 = −ηt + Fηx −Bφx + Eηy − Et −Exξ −Eyη − Euφ

+ Aηxy −Aφxu + Cη2x + Dη2y − 2Dφyu, (8)

0 = −ξt −Bφy + Fξx + Eξy − Ft − Fxξ − Fyη − Fuφ

−Aξxy −Aφyu + Cξ2x + Dξ2y − 2Cφxu,

0 = φt + Gφu − Fφx −Eφy −Gt −Gxξ −Gyη −Guφ,

−Aφxy − Cφ2x −Dφ2y

The number of equations and of unknown functions which appear in the
system (8) is relatively high. Two approaches are now possible: (i) to find
the symmetries of a given evolutionary equation, which means to choose
concrete forms for A(x, y, t, u), B(x, y, t, u), C(x, y, t, u), D(x, y, t, u),
E(x, y, t, u), F (x, y, t, u), G(x, y, t, u) and to make use of the system (8) in
order to find the coefficient functions ξ(x, y, t), η(x, y, t) and φ(x, y, t, u) of
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the Lie operator; (ii) to solve the system (8) by taking as unknown variables
A(x, y, t, u), B(x, y, t, u), C(x, y, t, u), D(x, y, t, u), E(x, y, t, u), F (x, y, t, u),
G(x, y, t, u) and by imposing a concrete form for the symmetry group. The
first approach represents the direct symmetry problem and it is the usual
one chosen in the study of the Lie symmetries of a given dynamical system.
The second approach, (ii), represents the inverse symmetry problem and
it is more special, allowing us to determine all the equations which are
equivalent from the point of view of the symmetry group they do admit.

2. Applications

In the considerations below we will solve the direct and inverse Lie symme-
try problems for two 2D nonlinear models: the Ricci flow model and the
convective-diffusion equation.

2.1. The Lie symmetry problems for the 2D Ricci flow model
One of the most fruitful models used in the study of the black holes and
in the attempt of obtaining a quantum theory of gravity is connected with
the Ricci flow equations [17].
We will investigate a 2D model for the Ricci flow equation, a nonlinear
parabolic equation obtained when the components of the metric tensor gαβ
should be deformed according to the equation:

∂

∂t
gαβ = −Rαβ, (9)

where Rαβ is the Ricci tensor for the n-dimensional Riemann space. The
metric tensor of the space gαβ will be connected with the Riemann metric
in the conformal gauge:

ds2 = gαβdxαdxβ =
1
2

exp{Φ(X, Y, t)}(dX2 + dY 2). (10)

The ”potential” Φ(X, Y, t) satisfies the equation:

∂

∂t
eΦ = 4Φ. (11)

It has been noticed in [18] that the equation (11) is pretty similar with
the Toda equation describing the integrable interaction of a collection of
two-dimensional fields {Φi, i = 1, 2} coupled by a Cartan matrix (Kij):

∑

j

Kije
Φj(X,Y ) = 4Φi(X, Y ). (12)

Introducing the field u(x, y, t) given by

u(x, y, t) = eΦ, (13)
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the equation (11) takes the form:

ut = (lnu)xy. (14)

An equivalent form for the previous equation, which will be used in the
following considerations of the paper, is:

ut =
uxy

u
− uxuy

u2
. (15)

The previous equation could be derived from the general one (5) by the
choice of the following particular coefficient functions:

A(x, y, t, u) =
1
u

,B(x, y, t, u) = − 1
u2

,

C(x, y, t, u) = D(x, y, t, u) = E(x, y, t, u) = F (x, y, t, u) = G(x, y, t, u) ≡ 0.

(16)

As we proved in [19], the equation (15) admits the 4−dimensional Lie al-
gebra spanned by the independent operators shown below:

V1 = x
∂

∂x
− u

∂

∂u
, V2 =

∂

∂x
, V3 = y

∂

∂y
− u

∂

∂u
, V4 =

∂

∂y
. (17)

The forms of the operators Vi, i = 1, 4 suggest their significances: V2, V4
do generate the symmetry of space translations, while V1, V3 are associated
with the scaling transformations.
When the Lie algebra of these operators is computed, the only non-vanishing
relations are:

[V2, V1] = V2, [V4, V3] = V4. (18)

2.1.1. An optimal system of subalgebras for the 2D Ricci flow
model

It is well known that reducing the independent variables by one would be
possible by using any linear combination of the generators of symmetry
(17) Vi, i = 1, 4. We will construct a set of minimal combinations known as
an optimal system [5]. In order to construct the optimal system we need
the commutators of the admitted symmetries given in the Table 1.

[Vi, Vj ] V1 V2 V3 V4

V1 0 −V2 0 0
V2 V2 0 0 0
V3 0 0 0 −V4

V4 0 0 V4 0

Table 1. Lie brackets of the admitted symmetry algebra
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An optimal system of a Lie algebra is a set of l−dimensional subalge-
bras such that each l−dimensional subalgebra should be equivalent to a
an unique element of the set under some element of the adjoint represen-
tation. The adjoint representation is constructed using the formula [5]:

Ad(exp(εVi))Vj =
∑ εn

n!
(adVi)nVj = Vj − ε[Vi, Vj ] +

ε2

2!
[Vi, [Vi, Vj ]]− ...

(19)

Let us consider the linear combination of the symmetry generators:

V = a1V1 + a2V2 + a3V3 + a4V4. (20)

Our task is to simplify as many of the coefficients ai as possible through
judicious applications of adjoint maps to V. Suppose first that a1 6= 0 in
(20). We may re-scale a1 so that a1 = 1. Let us start by the combination:

V (1) = V1 + a2V2 + a3V3 + a4V4. (21)

If we should act on V (1) by Ad(exp(a2V2)), we could make the coefficient
of V2 vanish:

V (2) = V1 + a3V3 + a4V4. (22)

Next, we should act on V (2) by Ad(exp(a4
a3

V4)) to cancel the coefficient of
V4, leading to the operator:

V (3) = V1 + a3V3. (23)

By using the adjoint representation (19), no further simplification would be
possible. Consequently, the 1−dimensional subalgebra spanned by V with
a1 6= 0 is equivalent to the one spanned by V1 + βV3, β ∈ R.

The remaining 1−dimensional subalgebras are spanned by operators with
a1 = 0 which have the expressions:

V (4) = a2V2 + a3V3 + a4V4. (24)

Let us assume that a2 6= 0 and let us scale to make a2 = 1. Now we
should act on V (4) by Ad(exp(a4

a3
V4)) so that it would be equivalent with

the operator:

V (5) = V2 + a3V3. (25)

No further simplification is possible. Consequently, the 1−dimensional sub-
algebra spanned by V with a2 6= 0 is equivalent to the one spanned by
V2 + αV3, α ∈ R.
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If we should consider the case a1 = a2 = a3 = 0, a3 6= 0, a3 = 1, the
following generator would be obtained:

V (6) = V3 + a4V4. (26)

Through acting on V (6) by Ad(exp(a4V4)), we would obtain the operator
V3 which represents the next subalgebra of the optimal system.
Finally, let us consider the last case a1 = a2 = a3 = 0, a4 6= 0, a4 = 1 in
(20). The last subalgebra V4 results from it.
As a conclusion, the optimal system of 1−dimensional subalgebras has the
form:

{V2 + αV3, V1 + βV3, V3, V4}. (27)

2.1.2. Invariant solutions for the 2D Ricci flow
Let us pass now to the problem of the invariant quantities. We shall
analyze the invariants associated with the optimal system of symmetry
operators (27).

• The operator V2 + αV3 from (27) has the characteristic equations:

dt

0
=

dx

1
=

dy

αy
=

du

−αu
. (28)

By integrating these equations 3 invariants should result, with the
expressions:

I1 = t, I2 = ye−αx, I3 = yu . (29)

By introducing the similarity variable z ≡ I2 = ye−αx, designating
the invariant I3 = h(t, z) as a function of the other ones, the following
solution is obtained:

u(t, x, y) =
h(t, z)

y
. (30)

Setting the derivatives of (30) into the Ricci equation (15), the simi-
larity reduced equation for h(t, z) results with the form:

hth
2 − αz2hh2z − αz2h2

z + αzhhz = 0 . (31)

The solution of the previous equation is:

h(t, z) = −1
2

(
r3t +

r2r3

2r1

)(
−1 + tanh2

(√
αr3(r4 − ln z)

2α

))
, (32)

with α, r1, r2, r3 arbitrary constants and z the similarity variable.
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Consequently, the invariant solution corresponding to the operator V2+αV3
has the final form:

u(t, x, y) = − 1
2y

(
r3t +

r2r3

2r1

)(
−1 + tanh2

(√
αr3(r4 − αx + ln y)

2α

))
.

(33)

• The operator V1 + βV3 from (27) has the characteristic equations:

dt

0
=

dx

x
=

dy

βy
=

du

−(1 + β)u
. (34)

In this second case, following the same procedure, we obtain, similarly,
3 independent invariants with the expressions:

I1 = t, I2 = yx−β, I3 = y(1+β)/βu . (35)

By introducing the similarity variable z ≡ I2 = yx−β, designating the
invariant I3 = h(t, z) as a function of the other ones, the following
solution is obtained:

u(t, x, y) = h(t, z)y−(1+β)/β. (36)

Setting the derivatives of (36) into the Ricci equation (15), the following
(1 + 1) reduced equation for h(t, z) results:

hth
2z(−1/β−2) + βhh2z + βz−1hhz − βh2

z = 0 . (37)

The solution of the previous equation is:

h(t, z) = −(p1t + p2)
2p2

3p1β
z1/β

(
−1 + tanh2

(
p4β − ln(z)

2p3β

))
, (38)

with β, p1, p2, p3, p4 arbitrary constants and z the similarity variable.
Consequently, by using (36) the invariant solution corresponding to the
operator V1 + βV3 has the final form:

u(t, x, y) = − 1
2p2

3p1β

(p1t + p2)
xy

(
−1 + tanh2

(
p4β − ln y + β ln(x)

2p3β

))
.

(39)

• Because (15) is symmetric in respect to x and y, a second similarity
solution of the form:

u(x, y) =
g3(x)

y
, ∀g3(x), (40)

exists, which is generated by the symmetry operator V3 from (17).
• Again, for the reason of symmetry in x and y of the analyzed model

(15), the last similarity solution, associated to the symmetry operator
V4 from (17), is generated as below:

u(x) = g4(x) , ∀g4(x). (41)
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2.2. Lie symmetry problems for the 2D convective-diffusion equa-
tion

The second nonlinear application is represented by the 2D convective-
diffusion equation [20]. It is a parabolic partial differential equation, which
describes physical phenomena where particles or energy (or other physical
quantities) are transferred inside a physical system through two processes:
diffusion and convection. In the simpler case when the diffusion coefficient
is variable, the convection velocity is constant and there are no sources or
sinks, the equation takes the form:

ut = uu2x + uu2y − vux , (42)

where the diffusion coefficient u and convective velocity v = const. belong
to the Ox direction.
It is easy to remark that (42) results from the general class of equations (5)
by choosing the particular functions:

C(x, y, t, u) = D(x, y, t, u) = u, F (x, y, t, u) = −v,

A(x, y, t, u) = B(x, y, t, u) = E(x, y, t, u) = G(x, y, t, u) ≡ 0 . (43)

2.2.1. Lie symmetries for the 2D convective-diffusion equation
Under the conditions (43) the general determining system (8) for symme-
tries becomes:

φ2u = 0,

ξy + ηx = 0,

2uξx − φ = 0,

2uηy − φ = 0, (44)
−ηt − vηx + uη2x + uη2y − 2uφyu = 0,

−ξt − vξx + uξ2x + uξ2y − 2uφxu = 0,

φt + vφx − uφ2x − uφ2y = 0.

It has the solution:

ξ =
c1

2
(x− vt) + c2y + c3, η =

c1

2
y − c2(x− vt) + c4, φ = c1u . (45)

In this case, the Lie symmetry generator takes the form:

U(x, y, t, u) =
∂

∂t
+

(c1

2
(x− vt) + c2y + c3

) ∂

∂x

+
(c1

2
y − c2(x− vt) + c4

) ∂

∂y
+ c1u

∂

∂u
. (46)
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Consequently, the nonlinear convective-diffusion equation (42) admits the
4−dimensional Lie algebra spanned by the operators shown below:

V1 =
(

x− vt

2

)
∂

∂x
+

(y

2

) ∂

∂y
+ u

∂

∂u
, (47)

V2 = y
∂

∂x
− (x− vt)

∂

∂y
, V3 =

∂

∂x
, V4 =

∂

∂y
.

When the Lie algebra of these operators is computed, the only non-vanishing
relations are:

[V3, V1] =
1
2

V3, [V4, V1] = V4, [V2, V3] = V4, [V4, V2] = V3. (48)

2.2.2. An optimal system for the convective-diffusion equation
For this model the commutators of symmetry operators (47) are given below
in Table 2:

[Vi, Vj ] V1 V2 V3 V4

V1 0 0 −V3/2 V4

V2 0 0 V4 −V3

V3 V3/2 −V4 0 0
V4 V4 V3 0 0

Table 2. Lie brackets of the admitted symmetry algebra

Let us consider the linear combination of the symmetry generators:

V = b1V1 + b2V2 + b3V3 + b4V4. (49)

Our task is to simplify as many of the coefficients bi as possible through
judicious applications of adjoint maps to V.Let us firstly suppose that b1 6= 0
in (49). We also may re-scale b1 such that b1 = 1. Let us start with the
combination:

V (1) = V1 + b2V2 + b3V3 + b4V4. (50)

If we should act on V (1) by Ad(exp(2b3V3)), we could make the coefficient
of V3 vanish and we could obtain the operator:

V (2) = V1 + b2V2 + b′4V4, b′4 = b4 + 2b2b3. (51)

By using the adjoint representation (19) for our model, no further simpli-
fication is possible. Consequently, the 1−dimensional subalgebra spanned
by V with b1 6= 0 is equivalent to the one spanned by V1 + αV2 + βV4, ∀
α, β ∈ R.
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The remaining 1−dimensional subalgebras are spanned by operators with
b1 = 0, which have the forms:

V (3) = b2V2 + b3V3 + b4V4. (52)

Let us assume that b2 6= 0 and scale to make b2 = 1. Now we act on V (3)

by Ad(exp(b3V4)) so that it could become equivalent with the operator:

V (4) = V2 + b4V4. (53)

Here, further simplification is yet possible. We should act on V (4) by
Ad(exp(−b4V3)). In this case, we would obtain the operator V2 which is the
following 1−dimensional subalgebra spanned by V with b1 = 0 and b2 = 1.

If we should consider the case b1 = b2 = 0, b3 6= 0, b3 = 1, the following
generator would be obtained:

V (3) = V3 + b4V4. (54)

If we should act on V (3) by Ad(exp(εV2)), where ε is the solution of the
equation

b4

2
ε2 + ε− b4 = 0, (55)

we vanish the coefficient of V4 and we could obtain the operator:

V (4) = b′3V3, b′3 = 1 + b4ε− ε2

2
, (56)

where ε verified (55).
Consequently, by the choice of b1 = b2 = 0, b3 = 1 in (49), V3 is generated
namely the last subalgebra of the optimal system.
As a conclusion, the optimal system of 1−dimensional subalgebras for the
2D convective-diffusion equation is:

{V2, V3, V1 + αV2 + βV4, ∀α, β ∈ R}. (57)

2.2.3. Invariant solutions for the convective-diffusion equation
Through the reduced similarity method, each operator {Vi, i = 1, 4} could
generate invariant solutions of the model. Let us illustrate for our case
what are the concrete forms of the similarity solutions generated not by
this base of operators, but by the set of the optimal 1D subalgebras (57).

• Taking into account (47), the symmetry operator V2 has the charac-
teristic equations:

dt

0
=

dx

y
=

dy

vt− x
=

du

0
. (58)
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In this second case, following the same procedure, we obtain also 3
independent invariants with the forms:

I1 = t, I2 = vtx− x2

2
− y2

2
, I3 = u. (59)

With the notation I2 ≡ z and I3 = u ≡ g(t, z), the reduced equation
for g(t, z) will appear:

gt + (2z − v2t2)g g2z + 2g gz + v2tgz = 0. (60)

It admits the solution:

g(t, z) =
2z − v2t2 + 2q1

4t + 2q2
, (61)

where q1, q2, v are arbitrary constants.

Thereby, the second similarity solution corresponding to the operator V2
has the final form:

u(t, x, y) =
2vtx− x2 − y2 − v2t2 + 2q1

4t + 2q2
. (62)

• The operator V3 from (47) yields the characteristic equations:

dt

0
=

dx

1
=

dy

0
=

du

0
. (63)

Here too 3 invariants are generated:

I1 = t, I2 = y, I3 = u. (64)

Once again, by expressing the last invariant I3 as a function of the other
ones, we obtain the third similarity solution:

u(t, y) =
q1

2 y2 + q3y + q4

q2 − q1t
, (65)

with q1, q2 arbitrary constants.

• Again on the ground of (47), the last operator from (57), V1 + αV2 +
βV4, has the characteristic equations:

dt

0
=

dx

αy + x−vt
2

=
dy

y
2 + α(vt− x) + β

=
du

u
. (66)
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By integrating these equations we obtain 3 invariants with the expres-
sions:

I1 = t, I2 =
y
2 + α(vt− x) + β

x
2 + αy − vt

2

, I3 =
u[

y2

2 + α(vt− x) + β
]2 . (67)

By introducing the similarity variable z ≡ I2, designating the invariant
I3 = h(t, z) as a function of the other ones, the following solution is
obtained:

u(t, x, y) = h(t, z)
[
y2

2
+ α(vt− x) + β

]2

. (68)

By setting the derivatives of (68) into the convective-diffusion equation
(42), we obtain the following (1 + 1) reduced equation for h(t, z) :

ht − 2
(

α2 +
1
4

)
z3hhz − 4

(
α2 +

1
4

)
zhhz

−2
(

α2 +
1
4

)
h2 = 0. (69)

The solution of the previous equation is:

h(t, z) =
−1

2
(
α2 + 1

4

)
t− γ

, (70)

with α, γ arbitrary constants.

Making use of (68), the invariant solution generated by the operator
V1 + αV2 + βV4 is pointed out:

u(t, x, y) = − 1
2

(
α2 + 1

4

)
t− γ

[
y2

2
+ α(vt− x) + β

]2

, (71)

where α, β, γ, v arbitrary constants.

2.2.4. The inverse symmetry problem for the 2D convective-
diffusion equation

Our aim is now to find the class of equations with the generical form (5)
which admits the same symmetries as those corresponding to the 2D non-
linear convective-diffusion equation (42). Consequently, we have to impose
that the coefficient functions (45) which determine the basis of the symme-
try operators (47) should verify the general determining system (8).
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The solutions of the differential system (8) describe the coefficient functions
of the general evolutionary equation (5) as follows:

A = B = 0, C = D = c3u,

E(u) =
√

u

[
c4 cos

(
c2

c1
ln(u)

)
− c5 sin

(
c2

c1
ln(u)

)]
, (72)

F (u) =
√

u

[
c4 sin

(
c2

c1
ln(u)

)
+ c5 cos

(
c2

c1
ln(u)

)
− v

]
,

G(u) = c6u.

where cj , j = 1, 6 and v are arbitrary constants.
In particular, for c3 = 1, c4 = c5 = c6 = 0 and for arbitrary c1 and c2, the
solution (72) generates the 2D nonlinear convective-diffusion equation (42)
discussed above.

3. Conclusions

This paper intended to present some key aspects about how a dynamical
system described by a nonlinear differential equation in its evolution could
be studied by using the symmetry method. The main steps which have to
be done in order to find a set of exact solutions are: (i) determining of the
general form for the symmetry operator; (ii) determining of the optimal
set of independent operators which could generate the minimal subalge-
bras; (iii) using the optimal set of independent operators and applying the
similarity reduction procedure, a complete set of invariant solutions could
be generated; (iv) last but not least, a special method could be applied
in order to find the largest class of nonlinear differential equations which
should belong to the same class as a given equation in the sense of the
symmetries they observe. This algorithm was applied for two important
examples of nonlinear 2D partial derivative equations, the Ricci flow and
the convective-diffusion equation. For the first example, the optimal sys-
tem of subalgebras contains the same number of generators, four, as the
whole symmetry algebra. The optimal system of symmetry subalgebras
for the convective-diffusion equation has the dimension three, in spite of
the existence of four independent symmetry operators. In both cases, the
whole set of invariant solutions has been obtained.
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