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Abstract

Electromagnetic (EM) excitations of the Kerr- Newman (KN) soliton
model are considered. The model of regular source of the KN solu-
tion was suggested recently in [3] in the form of a rotating domain
wall bubble, interior of which is filled by a superconducting matter
modelled by the Higgs field. Regularization of the internal EM field
is performed the Higgs effect, which expels the EM field to boundary
of the bubble. The KN soliton takes the form of a disklike source
which is compatible with the external EM KN field and metric. Inner
structure of the source is similar to the models of Q-balls, oscillons
and breathers. Using the Kerr-Schild formalism we obtain exact so-
lutions for the EM excitations of the Kerr geometry, and show that
excitations of the bubble source generate the beamlike pulses tending
to singular pp-wave solutions in he far zone. We link regularization
of the pp-wave beams with regularization of the Kerr singular ring,
which allows us to estimate radius of the beam core.

1. Introduction: Regular Source of Kerr-Newman (KN) so-
lution.

There are many evidences that black holes (BH) are akin to elementary
particles [1]. In particular, the KN solution has g = 2 as that of the
Dirac electron, [2]. The KN solution is the most natural generalization of
the Coulomb one. It gives us a consistent with gravity classical model of
spinning electron. Because of that, the consistent with gravity approach to
regularization of the KN solution may shed a new light on the problems of
divergencies in QED and open a new way to quantum gravity.
The problem of regularization of the black holes (BH) and in particular of
the KN solution has a long story. An outcome was given recently in [3] (it
will be referred henceforth as I), where a soliton model of the electron was
given as a regular KN solution, completed by a system of the chiral fields
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which produce a regular internal pseudovacuum state. Since spin of the
electron is very high, the black-hole horizons of the KN solution disappear,
opening a naked Kerr singular ring which is a branch line of the spacetime.
There appears a holographic two-sheeted structure of the Kerr geometry
[4, 5, 6]. To avoid this two-sheetedness, the Kerr ring should be covered by
a regular matter source.
A very long treatment of the problem of KN source (Newman, Israel,
Hamity, A.B.,Lopez, Krasinski and others...) has been evolved into the
model of a rotating domain wall bubble, interior of which is filled by a su-
perconducting matter which expels the electromagnetic(EM) KN field and
currents to the boundary of the bubble.
To achieve a compatibility with the external KN geometry, the oblate disk-
like form of the bubble has to be used. So, boundary of the disk corresponds
to the surface r = r0 = const. of the oblate ellipsoidal coordinate system
r, θ of the KN geometry. Consistency of the model dictates that interior of
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Figure 1: The oblate coordinate system.

the model has to be flat and filled by a system of the chiral fields forming
a false vacuum inside the bubble and a (domain wall) phase transfer to
the external vacuum state consistent with the external KN solution. One
of the chiral fields has to be the Higgs field. It takes inside the bubble
the non-zero value Φ = Φ0 exp{iχ} and interacts with the KN EM field
Fµν = Aµ,ν −Aν,µ , which is described by the Higgs Lagrangian,

L = −1
4
FµνF

µν +
1
2
DµΦD̄µΦ̄ + V, (1)

where Dµ = ∇µ + ieAµ. The Higgs mechanism (LG model) models super-
conductivity similar to the Nielsen-Olesen model of superconducting string
[7]. The resulting equations are

¤Aµ = Iµ = e|Φ|2(χ,µ +eAµ). (2)

Inside the bubble, |Φ| > 0, Iµ = 0, we have

¤Aµ = 0, χ,µ +eAµ = 0, (3)
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which shows that gradient of the phase of the Higgs field χ,µ ”eats up”
the KN electromagnetic(EM) field Aµ, (22), expelling the field strength
and currents to the boundary of the bubble. Therefore, the Higgs effect
forms a superconducting bubble core of the KN solution, which regularizes
the KN EM field. The KN gravitational field is regularized by the system
of chiral fields, which provide the phase transition from the external KN
field to a flat interior of the bubble. For parameters of an electron, the
bubble core has the Compton radius a = ~

2m forming an extremely oblated
rotating disk. Thickness of the disk is equal to the ”classical electron size”
r0 = e2/2m. So, the degree of oblateness is r0/a ∼ e2

~ ∼ 137−1. The KN
vector potential Aµ (22) takes at the boundary of the border of the bubble
a finite maximal value

max |Aµ| = 2m

e
kµ (4)

which forms a closed circular string. In accordance with (3), the time
component of the EM field |A0| = 2m

e should be matched with χ,0 which
determines frequency of the Higgs field ω = 2m. Since km is the null
field,kµ = (1,~k) and |~k| = 1, the spacelike and timelike components are
equal, | ~A| = |A0| = 2

me. In the same time, due to twisting form of the
Kerr principal null directions, ~A turns out to be tangent to the border of
the bubble and forms a closed circular component Aφ = 2

me along the bor-
der. Its amplitude also has to be matched with a periodicity of the Higgs
field. As a result, the loop integral S(loop) =

∮
eA

(loop)
φ dφ turns out to be

quantized, leading to the quantum condition

S(loop) = −4πma = 2πn, n = 1, 2, 3, .... (5)

which, due to the Kerr relation J = ma, implies quantization of the an-
gular momentum J of the regularized KN solution, |J | = ma = n/2, n =
1, 2, 3, .... We arrive at the following conclusions:
(i) the KN EM field of the model is to be regularized and its vector

potential is finite, |Aµ| ≤ 2
me,

(ii) angular momentum of the bubble source is to be quantized, J = ma =
n/2, n = 1, 2, 3, ...

(iii) the Higgs field of the bubble forms a coherent pseudo-vacuum state
oscillating with the frequency ω = χ̇ = 2m, like the spinning versions
of the spinning Q-balls, oscillons [8, 9] and the bosonic star models
[10].

For consistency of the KN electron model, [11, 12, 13, 14], the bubble-disk
should have the Compton radius. In principle, it agrees with the predicted
by QED radius of the region of virtual photons.1 However, the KN solitonic

1The Compton size of the electron was also suggested by Compton [15] from the
analysis of experimental data on a soft scattering of the electron on the metallic surfaces.
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model of electron has a new principal feature, which is not predicted by
QED: the Higgs field in the bubble core is to be coherently oscillating. It
means that the disklike bubble is not a simple cloud of virtual photons, but
it should be considered as an integral element of the electron structure.
The electromagnetic field and currents in a superconducting matter have
a ‘penetration depth’ δ ∼ 1

e|Φ| = 1/mv , [7], which forms a thin surface

layer where (3) is broken, and the deviations A
(δ)
µ = Aµ − A

(in)
µ obey the

equation ¤A
(δ)
µ = m2

vA
(δ)
µ . It shows the appearance of circular currents

at the boundary of the disklike core. These currents strongly increase
in the equatorial plane forming a circular string, near the former Kerr
singular ring. The EM excitations of the Kerr geometry is related with
traveling waves along the border of the disk, which was described in the
very old Kerr’s microgeon model [11], and is similar to excitations of the
Sen heterotic string model, [16].2

The considered in I case of the regularized KN solution corresponds to a
stationary solitonic background, without excitations. Meanwhile, the wave
excitations of the Kerr electron (the stringy traveling waves) [11, 13, 17]
represent important part of its structure, since they are to be connected
with generation of de Brougle waves [13, 14]. It was shown in [5, 4], that
the EM excitations of the KN geometry generate an infinite class of the
outgoing singular beam pulses tending asymptotically to singular pp-waves
[18, 19] propagating in different angular directions along twistor null rays
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Figure 2: The Kerr singular ring and the twistor null lines of the Kerr congruence.

of the Kerr congruence. There appears a question, how interplay these
solutions with the Higgs field of the regular KN source. We obtain that
amplitude of the beamlike solutions is strongly controlled by the Higgs core
of the regular KN source.
Next, we derive the exact expression for the nonstationary EM excita-

2It has also been supported by many other treatments, in particular, in I and in
[13, 17].
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tions of the Kerr geometry in terms of the complex vector potential. This
derivation is represented in App.D, however, it is rather cumbersome and
demands recalculation of many intermediate relations of Kerr-Schild for-
malism, which are given in the App.A,B,C. For the treatment of the gravi-
tational sector of the KN soliton and the the phase transition between the
inner and external vacua controlled by the chiral structure of the model, we
refer the readers to the paper I . We use the technics and notations of the
fundamental work by Debney, Kerr and Schild, [2], which will be referred
henceforth as DKS.

2. Basics of the Kerr-Schild formalism

The Kerr metric has the Kerr-Schild form

gµν = ηµν + 2he3
µe3

ν , (6)

where ηµν = diag{−1, 1, 1, 1} is the metric of auxiliary Minkowski back-
ground xµ = (t, x, y, z) ∈ M4.

The vector field e3
µ is described in terms of the null Cartesian coordinates

(u, v, , ζ, ζ̄) and has the form

e3 = du + Ȳ dζ + Y dζ̄ − Y Ȳ dv. (7)

The vector field e3 is tangent to Kerr’s principal null congruence (PNC)
K which is determined by the complex function Y ≡ Y (xµ), xµ ∈ M4. In
fact, the function Y is asymptotically a projective angular coordinate on
an infinite celestial sphere,

Y = eiφK tan(θ/2), (8)

however, in the near zone the angular coordinates turn in the oblate spheroidal
ones with a very specific Kerr angular coordinate φK . The relation between
the oblate coordinates and the Cartesian ones is

x + iy = (r + ia) exp{iφK} sin θ, z = r cos θ, ρ = r − t. (9)

The oblate coordinate r is adapted to a two-sheeted structure of the Kerr
spacetime and coversM4 twice, taking the positive, r > 0, and negative, r <
0, values in agreement with a two-sheeted structure of the Kerr spacetime.
The e3 direction is completed to the aligned with PNC null tetrad ea,

e1 = dζ − Y dv, e2 = dζ̄ − Ȳ dv, e4 = dv + he3. (10)

The dual tetrad is obtained by permutations e1 = e2, e2 = e1, e3 =
e4, e4 = e3. The corresponding directional derivatives ∂a ≡ ( ),a≡ eµ

a∂µ( )
are following

∂1 = ∂ζ − Ȳ ∂u, ∂2 = ∂ζ̄ − Y ∂u,

∂3 = ∂u − h∂4, ∂4 = ∂v + Y ∂ζ + Ȳ ∂ζ̄ − Y Ȳ ∂u. (11)
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It is known [20] that metric of the Kerr BH solution may be described either
in the terms of the outgoing PNC or in the terms of the ingoing one, but not
at the use of the both of them simultaneously. If a time-dependent EM field
is present, the freedom of choice is lost. The wave EM field is associated
with a retarded field, which selects the use of outgoing congruence. This
point demands some extra attention, since the choice of PNC influences on
the signs of many expressions. The used in DKS null Cartesian coordinates
2

1
2 ζ = x + iy, 2

1
2 ζ̄ = x− iy, 2

1
2 u = z + t, 2

1
2 v = z − t are adapted to

an ingoing PNC. The simplest case to transfer to an outgoing congruence
is to permute the time-dependence of the functions u and v, and we use
the following notations

2
1
2 ζ = x + iy, 2

1
2 ζ̄ = x− iy, 2

1
2 u = z − t, 2

1
2 v = z + t. (12)

corresponding to a future-oriented congruence.
The classical solutions should have the future-oriented Killing vector
Kµ,K0 > 0. In DKS the Killing operator K̂ = Kµ∂µ is considered in
null coordinates

K̂ = c∂u + q̄∂ζ + q∂ζ̄ − p∂v. (13)

The stationary Kerr-Schild (KS) metrics should be invariant with respect
to the real Killing directions,

K̂gµν = 0. (14)

In particular, gµν depends on e3, (7), which is determined by function
Y (xµ). While, the function Y (xµ) is determined by the Kerr theorem (see
App.B.) for the stationary, geodesic and shear free congruences. A gener-
alized condition of stationarity takes the form

K̂Y = K̂Ȳ = 0. (15)

From (11) one sees that ∂1K̂Ȳ = K̂Ȳ ,1 , but Y,1 = Z which yields K̂Z = 0.
Performed in DKS integration showed that general form of the function h
in terms of Y and Z is h = M(Y, Ȳ )(Z + Z̄)/2 + B(Y, Ȳ )(ZZ̄). It shows
that K̂h = 0, and consequently (15) implies (14).
Function Z is inversely proportional to the complex radial distance r̃,

r̃ = r + i cos θ = −PZ−1, (16)

where the function
P = c + q̄Ȳ + qY + pY Ȳ (17)

is to be related with the Killing vector (13). In particular, for the future-
oriented Kerr solution at rest, Kµ = (1, 0, 0, 0), K̂ = ∂t and we have
c = p = −1/

√
2, q = q̄ = 0, which yields

P = −(1 + Y Ȳ )/
√

2 . (18)
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The sign of P differs from the given in DKS.3 In this case, it is convenient
to replace e3

µ by the normalized vector field

kµdxµ = P−1e3 (19)

having k0 = 1. Then, the KN metric may be represented in the form

gµν = ηµν + 2Hkµkν , (20)

where H = hP 3 takes the simple form

H = (mr − e2)/(r2 + a2 cos2 θ). (21)

Vector potential of the KN solution is given by

Aµ
KN = Re

e

r + ia cos θ
kµ, (22)

where kµ may also be represented in the form (see App.B,(58))

kµdxµ = dr − dt− a sin2 θdφK . (23)

3. Electromagnetic excitations of the Kerr-Schild background

The obtained in DKS general solutions for electromagnetic field on the
Kerr-Schild background are described by the auto-dual components Fab
with respect to the tetrad ea, given by Eqs. (10). The field has only two
nonzero complex components,

F12 = F34 = AZ2; F31 = γZ − (AZ),1 . (24)

The real electromagnetic field Fab is determined by the relations

F41 = F42 = 0; F12 + F34 = F12; 2F31 = F31 . (25)

For the case γ = 0, integration was completed in DKS. The solutions are
given by A = ψ

P 2 , where ψ may be an arbitrary analytic function of Y,
ψ = ψ(Y ). The case ψ = e = const. corresponds to KN solution. Other
solutions have paid attention only recently. It was shown in [4], that the
function ψ(Y ) =

∑
i qi/(Y − Yi) corresponds to a linear superposition of

singular beams, which are supported by the straight twistor lines of the Kerr
congruence, Fig.2, and the beams break the horizon in angular directions
Yi = exp{iφ} tan θ

2 .

3To specify the signs we recalculate many expressions of the KS formalism in Ap-
pendixes.
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The solutions with γ 6= 0 were obtained in [5]. They are nonstationary and
depend on an extra complex retarded-time coordinate τ, see App.B,C.,

A =
∑

i

ψi(Y, τ)/P 2, ψi(Y, τ) = qi(τ)/(Y − Yi). (26)

Any EM excitation of the Kerr geometry generates the beam pulses. In
App.D we show that (24) and (25) may be expressed via complex vector
potential

A = AZe3 + χ̄dY, (27)

where χ̄ =
∫

AdȲ , and Y and τ being kept constant in this integration.
Together with (61) and (73), this eq. shows that the fields A, dY and dτ
are spanned by the null vectors e1 and e3, and therefore, they lie in the
”left” complex null planes. The complex vector potential (27) and (26)
describes infinite family of the pulsing EM beams propagating along the
twistor null lines of the Kerr congruence. The i-th beam in the angular
direction Yi has ψi(Y, τ) = qi(τ)

(Y−Yi)
, and the function

χ̄i =
∫

Y,τ=const.
dȲ

qi(τ)
P 2(Y − Yi)

=
−2qi(τ)

Yi(Y − Yi)(1 + YiȲi)
. (28)

Taking into account that kµ = e3
µ/P and r̃ = −P/Z = r + ia cos θ, we

obtain for the complex potential caused by the i-th beam the expression

A(i) = ψi(Y, τ){ 1
r + ia cos θi

k(i)
µ dxµ −

√
2dY

PiYi
}, (29)

where Pi = (1 + YiȲi)/
√

2.

4. Regularization of singularities

The expression (29) for complex potential is important, since it has the form
which is close to the used in QED representation for quantum oscillators.
The usual plane waves conflict with the general covariance of gravity, bring-
ing also the problem of their infinite energy. Quantum theory uses widely
the Fourier transform, which is also a source of the incompatibility with
gravity. It seems reasonable that this conflict has to be overcome by a mu-
tual convergence of these theories. From the gravity side, such a concession
is related with a renunciation of the general covariance, which is brilliantly
achieved in the KS form of metric which has an extremely fixed coordinate
system adapted to the auxiliary Minkowski space-time. The concession
from quantum side should apparently be related with the renunciation of
the Fourier transform in its usual form. In this respect, resolution of the
conflict arrives from twistors. On the one hand, the twistors are basic ele-
ments of the KS geometry, on the other hand is there is a twistor analog of
the Fourier transform [28, 27, 6], in which the basic objects are the complex
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null planes. In the KS geometry they are the complex null planes spanned
by the e3 and e1 null directions. They are retained to be flat planes in the
curved KS space time, since the function h drops out of the metric (6) due
to orthogonality of the directions, e3

µe3µ = 0, e3
µe1µ = 0. The complex

representation of the vector potential (29) is exactly spanned by the e3

and e1 null directions (see 61)) which shows that it lies in the twistor null
plane, and this representation is the most close to description of quantum
oscillators.

The expression (29) shows also that any elementary EM excitation of the
KS geometry is related with excitations at least of two topologically coupled
singular lines: one of them is the Kerr singular ring r̃ = r + ia cos θ = 0,
and the second line is the axial singularity caused by one of the poles of
function ψ. Axial beams appear inavoidably in all the non-stationary solu-
tions. For the stationary KN solution regularization of the Kerr singularity
was considered in I, and briefly in the Introduction to this paper.

The non-stationary solutions, related with the EM excitations of the KS
geometry, are accompanied by traveling waves for which these singulari-
ties play the role of waveguides. In the KS solutions these waveguides are
formed by the twistor null lines of the Kerr congruence, and the associated
traveling waves go in far zone to the well known in gravity pp-wave solu-
tions, which turn out to be consistent with gravity analogs of the plane
waves.

The Kerr singular ring plays also the role of a waveguide for the circular
traveling waves generating the mass and spin of the electron, which was
mentioned still in the old microgeon model [11]. In the regular KN soli-
ton model considered in I, the waveguide is formed by the edge rim of the
disklike KN source. As a consequence of the wave solutions (29) the circu-
lar and axial pp-waves are mutually connected and excitations of the KN
geometry may be considered as a source of the exact pp-wave solutions.

The potential (29) does not fall off by r → ∞. Near the i-th beam in
the far zone, |Y − Yi| = ρi/2r, where ρi ≈ rδθi, is the distance from the
beam singularity. As a result, the r dependence cancels for the time and
longitudinal components of the potential (proportional to k(i)∞ = (dt, dr)),
as well as for the transverse polarized components, proportional to dYi/Yi =
idφi + 1

sin θi
dθi ∼ 1

rdxµ
⊥. As a back-reaction, the i-th singular EM pp-wave

produces a singular action on the metric – a gravitational pp-wave, [18], of
the KS form (6) with the asymptotically constant null direction ki = e3

i /Pi.
One sees that the KS metric for a single beam in the far zone is determined
by function H = −4|qi(τ)|2

ρ2
i

which also depends only on the distance from
the beam ρi. Notice, that in the transverse to ki plane, metric of the pp-
wave solutions is flat, and the ’conical singularity’ is absent. So, the pp-
waves form also the tensionless (Schild’s) strings reminiscent of the heterotic
strings of the superstring theory [16]. The beams may be regularized by
the Higgs field in the same manner as it was done in I for the KN bubble
source. If the pp-wave beams were created by the KN source, the condition
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(4) should be retained for the beams in far zone too, and the Higgs field
will oscillate with the frequency ω = 2m. The amplitude |A(i)| = 2m

e , will
also determine the periodicity of the Higgs field along the beam direction,
χ,r = max|Aµkµ| = 2m

e . The transversal component, forming circulation of
the potential around the beam singularity, allows us to estimate radius of
the beam core. Setting |q| = e, and using the relation dφi = Im d(Y−Yi)

Y−Yi
,

we equate the loop integral

S(loop) = e

∮
Re Aφdφ ∼ 2πe2/ρmin (30)

with the incursion of the Higgs phase 2π, and obtain ρmin ∼ e2, which is
∼ 137−1 in the Planck units G = ~ = c = 1.

Regularization of the Kerr circular singularity was performed in I only for
the stationary KN case. Appearance of the EM excitations impose essential
constraints on this procedure. Origin of the obstacles is related with the
leading term of the real vector potential (29) in the equatorial plane of the
KN solution

Re A|board =
1
rb

Re ψ(Y, τ) k(i)
µ dxµ. (31)

The KN solution has ψ(Y, τ) = const. = e, which produce an uniform flow
of the vector potential along the circular board of the KN bubble source,
cos θ = 0; r = rb , which allowed us to satisfy the condition (29) for the
phase of the Higgs field,

χ,µ +eRe Aµ|board = 0. (32)

For traveling waves we have a dependence ψ on Y, and τ. At the board od
the disklike source, Y |board = exp iφ, and τ |board = t, which leads to the flow
with a variable amplitude, and moreover, to reverse direction of the flow.
It seems that the matching χ,φ = −eRe Aφ|board, χ,0 = −eReA0|board is
impossible. However, there is let-out – an extra parameter rb, and the both
these relations could be fulfilled if we set A0 = 2m/rb, or rb = 2m/A0.
In this case, we can avoid reversing the sign by a special choice of Y -
dependence. In particular, setting ReA0|board = 2m

e Re (1 + Y )|board =
m
e cos2(θ/2), we obtain the EM excitation with a half-integer angular de-
pendence. It is interesting this case may be considered as the simplest EM
excitation of the charged KN solution. Effectively, it leads to a deformation
of the bubble source, leading to breaking of its axial symmetry. However,
investigation of these possibilities goes out of the frame of this paper, and
it will be given elsewhere.

Appendix A: Complex representation of the DKS formalism
The Kerr and Kerr-Newman solutions may be considered as the fields gener-
ated by a complex source propagating in the complex spacetime Xµ

0 ∈ CM4
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along a complex world-line (CWL) X0(τ) = (τ, 0, 0,−ia) , parameterized
by the complex time parameter τ, [21, 24, 13, 5]. It allows us to consider the
KN solution as a real slice xµ ∈M4 of some complex complex retarded-time
construction with a complex radial distance

r̃ = r + ia cos θ =
√

(~x− ~x0)2 =
√

x2 + y2 + (z + ia)2. (33)

In the given by (12) null coordinates xn
0 = (u0, v0, ζ0, ζ̄0) we have

xn
0 = 2−1/2(−ia− τ, −ia + τ, 0, 0). (34)

The unit timelike vector ẋµ
0 = ∂τx

µ
0 = (1, 0, 0, 0) will have the null Cartesian

coordinates
u̇0 = −2−1/2, v̇0 = 2−1/2, ζ̇0 = ˙̄ζ = 0, (35)

∂τx
n
0 = 2−1/2(−1, 1, 0, 0), (36)

and the tetrad direction e3 will have the null components

e3
n = (1,−Y Ȳ , Ȳ , Y ). (37)

Function
U = xµe3

µ, (38)

(sometimes called the potential) plays important role of a real retarded time
and determines a position of the front surfaces. Together with the complex
angular coordinates Y, Ȳ and the radial one r ) it may be considered as the
fourth spacetime coordinate, or one of the tetrad components (e3) of the
spacetime points xµ. For the real xµ and Y = (Ȳ )∗ it is real. For the real
points (12)

U = u + Ȳ ζ + Y ζ̄ − Y Ȳ v, (39)

and action of the operator (13) on U determines function

P = K̂U = c + q̄Ȳ + qY + pY Ȳ . (40)

On the CWL xn
0 (τ), the values U0 = xn

0 (τ)e3
n remain to be real for Y =

(Ȳ )∗, (see [24]). In the retarded-time construction P = K̂U = P0 = ∂τU0.
The following from the Kerr theorem extra demands are the geodesic and
shear-free conditions. The Ricci rotation coefficients are

Γa
bc = − ea

µ;νe
µ
b eν

c . (41)

The e3 direction will be geodesic if and only if Γ424 = 0, and it is shear free
if and only if Γ422 = 0. The corresponding complex conjugate terms are
Γ414 = 0 and Γ411 = 0. It was shown in DKS that Γ42 = Γ42ae

a = −dY −
hY,4 e4. Therefore, the congruence e3 is geodesic if Γ424 = −Y,4 (1−h) = 0,
and is shear free if Γ422 = −Y,2 = 0. Thus, the function Y (x) defines a
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shear-free and geodesic congruence iff Y,2 = Y,4 = 0, which means that dY
is spanned by e1 and e3.
The equations Y (xµ) = const. fixes the direction e3, and together with
U(xµ) = const. it fixes one of the rays of the Kerr congruence (twistor, or
geodesic line of a photon). From the complex point of view this null ray is a
’left’ complex null plane (spanned by directions e3 and e1) [24, 23], The KS
spacetimes are foliated on these null planes satisfying the extra condition
of stationarity K̂Y = 0.

Appendix B: Twistor variables and the Kerr Theorem

The function U = xµe3
µ sheds the light on geometrical meaning to the

projective twistor coordinates λ1 and λ2. One sees that λ1 = xµe1
µ is

the ’first’ tetrad components of a spacetime point xµ, which in the null
coordinates takes the form

λ1 = xne1
n = ∂Y U = ζ − Y v; λ2 = U − Ȳ ∂Y U = u + Y ζ̄. (42)

Since U is real, the complex conjugate combination,

λ̄1 = xµe2
µ = ζ̄ − Ȳ v = ∂Ȳ U, (43)

describes the right null plane. These relations may be completed by the
fourth tetrad component xµe4

µ = v−hU. Therefore, the twistor coordinates
are

TA = {Y, ζ − Y v, u + Y ζ̄}. (44)

The Kerr Theorem [24, 6, 18, 22, 23] determines the geodesic and shear-
free Principal Null Congruences via an arbitrary analytic generating func-
tion F of the projective twistor variables TA = {Y, ζ − Y v, u + Y ζ̄},
as the solution Y (x) of the equation F (TA) = 0, with a subsequent use of
the relation (7).
The Kerr congruences for a Kerr’s source in a general position with an
arbitrary finite boost corresponds to a quadratic in Y generating function
F, [23, 24, 25, 26],

F = A(Y − Y +)(Y − Y −) = AY 2 + BY + C, (45)

where the coefficients are given by the relations [25]

A = (ζ̄ − ζ̄0)v̇0 − (v − v0) ˙̄ζ0;

B = (u− u0)v̇0 + (ζ − ζ0) ˙̄ζ0 − (ζ̄ − ζ̄0)ζ̇0 − (v − v0)u̇0;

C = (ζ − ζ0)u̇0 − (u− u0)ζ̇0. (46)

In the rest frame we use (35) and obtain

A = (x− iy)/2, B = z + ia, C = −(x + iy)/2 . (47)
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The roots of the equation F = 0 are given by

Y ± = (−B ±∆)/2A, (48)

where ∆ = (B2 − 4AC)1/2, and we obtain from (33) that

∆ =
√

x2 + y2 + (z + ia)2 ≡ r̃ (49)

is the complex radial distance, and two roots Y ± of the eq. F (Y ) = 0 are

Y ± = (−B ± r̃)/2A. (50)

We have to match this expression with (8). For Y + we set z = r cos θ and
obtain the relations

eiφ tan
θ

2
= Y + =

−B + r + ia cos θ

2A
=
−r cos θ − ia + r + ia cos θ

x− iy

= 2
sin2 θ

2 (r − ia)
x− iy

,

which yield the coordinate relations

x− iy = (r − ia)e−iφ sin θ, z = r cos θ (51)

compatible with (9). Now, we would like to check the second root Y −,
retaining the relation z = r cos θ. We can do it by a transfer to the negative
sheet, with the replacement r → −r and cos θ → − cos θ. We obtain the
relations Y − = (−B − r − ia cos θ)/2A = −2 cos2 θ

2(r + ia)/(x− iy) which
are compatible with Y − = −eiφ cot θ

2 and the coordinate relations

x− iy = (r + ia)e−iφ sin θ, z = r cos θ. (52)

Antipodal map. We obtain that the second root Y − is related with the
replacement r + ia cos θ → −(r + ia cos θ) which is effectively a transfer
to the negative sheet of the Kerr metric r → −r and the replacement
cos θ → − cos θ, accompanied by the antipodal transformation of the pro-
jective angular coordinate, IA∗ : Y + → Y −,

Y − = − 1
(Y +)∗

. (53)

Note, that the antipodal transformations of the null vector field kµ = (k0,~k)
leads to reversal of its time-direction ḱµ = IA ∗ kµ = (−k0,~k).
Complex expansion of the congruence Z = (expansion) + i (twist) is de-
termined in DKS as the tetrad derivative

Z = Y,1 , (54)
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and is related to the generating function F as follows

Z = −PF−1
Y . (55)

On the other hand, one sees that FY ≡ dY F = 2Y A + B = (x − iy)Y ± −
z + ia = r̃, and therefore, we have

r̃ = FY = −P/Z, (56)

and we obtain that the Kerr theorem determines almost all the necessary
functions of the Kerr-Schild metrics, ([26]).
Null direction k in the Kerr angular variables. We start from (9)
and (8) and obtain ζ = 1√

2
(x + iy) = 1√

2
(r + ia)eiφ sin θ which yields

dζ/ζ = dr/(r + ia) + idφ + cos θdθ/ sin θ. We note that

P = − 1√
2
(1 + Y Ȳ ) = − 1√

2 cos2 θ
2

(57)

and obtain Ȳ dζ = −P
2 (r + ia)[sin2 θdr/(r + ia) + i sin2 θdφ + sin θ cos θdθ].

We have also du − Y Ȳ dv = P (dt − cos θdz). As a result, for k = e3/P =
1
P (du + Ȳ ζ + Y ζ̄ − Y Ȳ dv) we obtain

k = kµdxµ = dt− dr + a sin2 θdφ, (58)

which differs by sign from the eq.(7.5) of DKS. Note, that in DKS authors
retain in sec.7 the notation e3 for its normalized value kµdxµ = e3/P.

Appendix C: Retarded time and basic directional derivatives
Let us now calculate some important tetrad derivatives. The tetrad deriva-
tives of Y are determined by definition of Z, (54): ( Z = Y,1); by the
conditions of the Kerr theorem: the geodesic and shear-free conditions for
PNC are Y,2 = Y,4 = 0; and by the following from the Kerr theorem relation
for Y,3 . Therefore, for the geodesic and shear-free PNC we have:

Y,1 = Z, Y,2 = Y,4 = 0, Y,3 = −PȲ Z/P. (59)

Conjugate relations yield:

Ȳ ,1 = Z̄, Ȳ ,1 = Ȳ ,4 = 0, Ȳ ,3 = −PY Z̄/P. (60)

We obtain now

dY = Y,1 e1 + Y,3 e3 = Z(e1 − PȲ

P
e3); dȲ = Z̄(e2 − PY

P
e3), (61)

which yields

dY ∧ dȲ = ZZ̄(e1 ∧ e2 − PY

P
e1 ∧ e3 +

PȲ

P
e2 ∧ e3). (62)
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We obtain also

de3 = Z(e1 − PȲ

P
e3) ∧ e2 + Z̄(e2 − PY

P
e3) ∧ e1 = dY ∧ e2 + dȲ ∧ e1. (63)

One can easily obtain from (8) that cos θ = 1−Y Ȳ
1+Y Ȳ

; sin θ = 2|Y |
1+Y Ȳ

, and
we obtain (cos θ),1 = −ZȲ /P 2; (cos θ),2 = −Z̄Y/P 2; (cos θ),3 = −(Z +
Z̄) (Y Ȳ )2√

2P 3 ; (cos θ),4 = 0. Taking into account (59), we obtain

P,1 = −2−1/2Ȳ Z; P,2 = −2−1/2Y Z̄ ; (64)
P,3 = −PY PȲ (Z + Z̄)/P ; P,4 = 0.

From (56) we derive r̃,2 = −P,2 /Z + PZ,2 /Z2, and using the given in [2]
commutation relation

Z,2 = (Z − Z̄)Y,3 , (65)
we obtain r̃,2 = −PȲ . For the Kerr metric at rest we have r̃,2 = r,2 +
ia(cos θ),2 , and since (cos θ),2 = −Z̄Y/P 2 we obtain r,2 = −PȲ +iaZ̄Y/P 2.
So far as r is real the complex conjugation yields r,1 = −PY − iaZȲ /P 2,
and finally r̃,1 = r,1 +ia(cos θ),1 = −PY − 2iaZȲ /P 2 The DKS relation
Z,4 = −Z2, yields r̃,4 = −(P/Z),4 = −P. To get derivative r̃,3 = −P,3 /Z +
PZ,3 /Z2 we use the given in DKS expression Z,3 = Y,31 +hZ2−Y,3 Ȳ ,3 . For
the considered solution at rest it gives Z,3 = −2iaȲ PȲ Z3/P 4−Z2(PPY Ȳ −
PY PȲ )/P 2 + hZ2 − PY PȲ ZZ̄/P 2, which yields r̃,3 = 2PY PȲ /P − PY Ȳ +
hP − 2iaȲ PȲ Z/P 3. Summarizing, we obtain

r̃,1 = −PY − 2iaȲ Z/P 2; r̃,2 = −PȲ ;
r̃,3 = 2PY PȲ /P − PY Ȳ + hP − 2iaȲ PȲ Z/P 3; r̃,4 = −P ; (66)

It should be noted that these relations are valid only for the Kerr metric
at rest. Let us also summarize all the derivations Z,a:

Z,1 = 2iaȲ Z3/P 3, Z,2 = (Z − Z̄)Y,3 , (67)
Z,3 = −2iaȲ PȲ Z3/P 4 − Z2(PPY Ȳ − PY PȲ )/P 2 +

hZ2 − PY PȲ ZZ̄/P 2, Z,4 = −Z2.

We are approaching to the our aim to consider the properties of our retarded
time parameter τ = t− r̃. Since t = 2−1/2(v − u), one can easily obtain

t,1 = −PY , t,2 = −PȲ , (68)
t,3 = PY Ȳ + hP, t,4 = −P,

and therefore, for the retarded time τ = t− r̃ we have

τ,1 = t,1−r̃,1 = −2iaȲ Z/P 2, (69)
τ,2 = 0, (70)

τ,3 =
1
P

+ 2iaZȲ PȲ /P 3 (71)

τ,4 = 0. (72)
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It yields

dτ = τ,1 e1 + τ,3 e3 =
1
P

e3 + τ,1 Z−1dY, (73)

and
dτ ∧ dY =

1
P

e3 ∧ dY. (74)

Finally, using these relations, one can check action of the operator D =
∂3 − Z−1Y,3 ∂,1−Z̄−1Ȳ ,3−∂,2 on the retarded time τ, and we obtain

Dτ = τ,3 +(PȲ /P )τ,1 =
1
P

. (75)

Appendix D. Complex vector potential
For the complex vector potential (27), where χ̄ =

∫
AdȲ , and Y and τ

being kept constant, we have to prove that the complex components of the
electromagnetic field strength (24) are obtained from the relation

dA = F12e
1 ∧ e2 + F31e

3 ∧ e1 + F34e
3 ∧ e4, (76)

where F12 = F34 = AZ2 and F31 = γZ − (AZ),1 . This fact is not trivial
since the analogous relation obtained in DKS cannot be separated onto
complex conjugate components. The calculations are rather cumbersome.
We use the auxiliary relations

dY ∧ dȲ = ZZ̄e1 ∧ e2 + ZȲ ,3 e1 ∧ e3 − Z̄Y,3 e2 ∧ e3; (77)

and
de3 = (Z − Z̄)e1 ∧ e2 − Y,3 e2 ∧ e3 − Ȳ ,3 e1 ∧ e3. (78)

We have dA = (AZ),1 e1 ∧ e3 + A,2 Ze2 ∧ e3 + AZ,2 e2 ∧ e3 + AZ,4 e4 ∧
e3 + AZde3 − AdȲ ∧ dY − (

∫
ȦdȲ ) dτ ∧ dY. To develop this expression

we use A,2 Z = 2Z̄AY,3 , (DKS eq.(5.42)), and also Z,2 = (Z − Z̄)Y,3 ,

Z,4 = −Z2 and (78). Further, we replace Ȧ by the second EM field equation
Ȧ = −(Pγ),Ȳ , obtained in [14, 5], which allows us to integrate the last
term. Finally, we use (77),(74) and dY = Ze1 + Y,3 e3, and obtain

dA = [(AZ),1−γZ]e1 ∧ e3 + AZ2e3 ∧ e4 + AZ2e1 ∧ e2 , (79)

which corresponds to (24) for autodual components of the EM strength.
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