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Abstract

This is short review of tachyon condensation and open string field
theory. After a brief introduction to open string theory, the SFT ac-
tion is introduced and illustrated. Next comes tachyon condensation
in the level truncation approach, which introduces the main topic:
the description of the analytic solution and the proof of the first two
conjectures by Sen. Finally we present a new proposal to construct
analytic lump solutions in SFT and prove third Sen’s conjecture.

1. Introduction

Tachyon condensation is a pervasive phenomenon in physics. Whenever a
field theory has a potential with a local maximum, surrounded by (possibly
a continuum of) local minima, quantization around the maximum brings
about the appearance of an unphysical particle with negative square mass,
the tachyon. The tachyon is simply the manifestation of the instability
of the vacuum where the theory is quantized. Any tiny disturbance takes
the system to a more stable configuration based on a local minimum (we
say the tachyon has condensed). This is, for instance, the typical situation
of the spontaneous breakdown of a symmetry. The subject of this review
is tachyon condensation in a system of infinite many degrees of freedom,
as described by string field theory (SFT). The motivations underlying the
study of this system are both theoretical and applicative, and stem from
the basic role of D–branes in the framework of string theory.
D–branes mean open strings: open strings (unlike closed strings) do not
exist as autonomous entities but only when their endpoints can lie on D–
branes (which may also be space-filling). On the other hand D–branes

∗ I would like to thank the Yukawa Institute for Theoretical Physics, Kyoto, for hos-
pitality and financial support during this research.

† e-mail address: bonora@sissa.it

91



92 Loriano Bonora

do not have an autonomous existence either: they are a geometrical ab-
straction representing the dynamics of the open strings attached to them.
Studying the dynamics of open strings is therefore of utmost importance
and tachyon condensation is basic in this respect. An example will suffice.
A phenomenon like inflation can be described by the attractive potential
between a D–brane and an anti–D–brane, at least as long as the two branes
are far apart. However, when their distance becomes smaller than the string
scale (after inflation has terminated) the string spectrum develops tachyons
and the natural evolution of the system is represented by tachyon conden-
sation.

In these lectures I will discuss bosonic open string field theory. Purely
bosonic string theory is, of course, by itself insufficient, if anything because
its spectrum does not contain fermions. However open string field theory
is a simplified playground with respect to the corresponding superstring
field theory versions. Exploiting the relative simplicity of the bosonic the-
ory it has been possible in the last ten years to make significant progress
and, then, export some of the results to the superstring relatives. There-
fore our purpose here will be the description of tachyon condensation and
related phenomena in the framework of Witten’s Open String Field The-
ory [1], and the guideline for all these recent developments is represented
by A.Sen’s conjectures, [2, 3]. The latter can be summarized as follows.
Bosonic open string theory in D=26 dimensions is quantized on an unsta-
ble vacuum, an instability which manifests itself through the appearance of
the open string tachyon. The effective tachyonic potential has, beside the
local maximum where the theory is quantized, a local minimum. Sen’s con-
jectures concern the nature of the theory around this local minimum. First
of all, the energy density difference between the maximum and the mini-
mum should exactly compensate for the D25–brane tension characterizing
the unstable vacuum (first conjecture): this is a condition for the (relative)
stability of the theory at the minimum. Therefore the theory around the
minimum should not contain any quantum fluctuation pertaining to the
original (unstable) open string theory (second conjecture). The minimum
should therefore correspond to an entirely new theory, which can only be
the bosonic closed string theory. If so, in the new theory one should be able
to find in particular all the classical solutions characteristic of closed string
theory, the D25–brane as well as all the solitonic solutions representing
lower dimensional D–branes (third conjecture).

The evidence in favor of these conjectures has been accumulating over the
years although not with a uniform degree of accuracy and reliability, until
the first two conjectures were rigorously proved, [7, 8]: an explicit analytic
(non–perturbative) SFT solution was produced, which links the initial vac-
uum to the final one and it was shown that this vacuum does not contain
perturbative open string modes. As for the third conjecture a recent pro-
posal has been put forward recently, [20], as to how to construct analytic
lump solutions. It is the purpose of this review to illustrate these results
in turn.

subject of SFT and tachyon condensation, which would take an article the
size of a book. There are already several reviews the reader can consult
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[11, 12, 13, 10, 14], which cover different aspects and different subjects. My
aim here is to give a general survey of the search for analytic solutions.
But, before, I would like to mention a few important topics are that not
considered in these lectures, but belongs in a natural development of the
material covered here.
The D25–brane and its lower dimensional companions are unstable, be-
cause there is no conserved charge (like in the corresponding supersym-
metric theories) associated to them. Therefore SFT must contain also
time–dependent solutions that describe their decay. This issue has been
discussed in [4, 5] and approximate solutions have been found in SFT, but
uncontroversial analytic solutions are still lacking.
Finally, a very far–reaching consequence of Sen’s conjectures has so far
remained rather implicit in the literature. It is evident that if the three
conjectures are true and the new vacuum is the closed string vacuum, then
it means that the closed string degrees of freedom can be represented (non–
perturbatively) in terms of the open string ones. This is an exciting possi-
bility that has not been methodically explored so far.

2. Open string field theory

Before we come to the formal definition of string field theory, i.e. second
quantized string theory, we need a short summary of first quantized open
string theory.

2.1. First quantized open strings
First quantized open string theory in the critical dimension D=26 is formu-
lated in terms of quantum oscillators αµ

n, −∞ < n < ∞, µ = 0, 1, . . . , 25,
which come from the mode expansion of the string scalar field

Xµ(z) =
1
2
xµ − i

2
pµlnz +

i√
2

∑

n 6=0

αµ
n

n
z−n

having set the characteristic square length of the string α′ to 1. They satisfy
the algebra [αµ

m, αν
n] = mηµνδn+m,0, η being the space–time Minkowski

metric. The vacuum is defined by αµ
n|0〉 = 0 for n > 0 and pµ|0〉 = 0.

The states of the theory are constructed by applying to the vacuum the
remaining quantum oscillators αµ†

n = αµ
−n, with n > 0. Any such state

|φ〉 is given a momentum kµ by multiplying it by the eigenstate eikx, and
will be denoted by |φ, k〉. In order for such states to be physical they must
satisfy the conditions

L(X)
n |φ, k〉 = 0, n > 0, (L(X)

0 − 1)|φ, k〉 = 0 (1)

where L
(X)
n are the matter Virasoro generators

L(X)
n =

1
2

:
∞∑

k=−∞
αµ

n−kα
ν
k : ηµν (2)
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where we have set α0 = p and :: denotes normal ordering. Conditions (1) are
the quantum translation of the classical vanishing of the energy–momentum
tensor.
The conditions (1) define the physical spectrum of the theory (in D=26).
All the states are ordered according to the level, the level being a natural
number specified by the eigenvalue of L

(X)
0 + L

(gh)
0 − p2. The lowest lying

state (level 0) is the tachyon represented by the vacuum with momentum k
and square mass M2 = −1. The next (level 1) is the massless vector state
ζµ αµ

−1|0〉eikx with k2 = 0 and ζ · k = 0, which is interpreted as a gauge
field. The other states are all massive, with increasing masses proportional
to the Planck mass square.
To each of these states is associated a vertex operator. For instance, to
the tachyon we associate Vt(k) =: eik·X :; to the vector state VA(k, ζ) =:
ζ · Ẋeik·X :, where the dot on top of X denotes the tangent derivative with
respect to the world–sheet boundary (the real axis in the z UHP); and so
on. In this way one can formulate rules to calculate any kind of amplitude
of these operators 〈V1(k1) . . . VN (kN )〉, as far as these amplitudes are on
shell. At low energy (α′ → 0) such amplitudes, as expected, reproduce
those of the corresponding field theory (for instance, the amplitudes of VA
reproduce the amplitudes of a Maxwell field theory). If we want to compute
off–shell amplitudes, in general we have to resort to a field theory of strings.
This was one of the original motivations for introducing string field theory.
So far we have ignored ghosts. In fact the b, c ghosts, which come from the
gauge fixing of reparametrization invariance via the Faddeev–Popov recipe,
play a minor role in perturbative string theory. They play a much more
important role in SFT. They are also expanded in modes cn and bn and
one can construct the corresponding Virasoro generators

L(gh)
n =:

∑

k

(2n + k) b−kck+n : (3)

Both (2) and (3) obey the same Virasoro algebra

[Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n) (4)

The central charge c equals the number of X fields in the matter case
(i.e. 26), while it equals -26 in the case of the b, c ghosts. So the total
central charge vanishes in D=26. This guarantees the absence of any trace
anomaly, and therefore consistency of the bosonic string theory as a gauge
theory.
The previous results about ghosts and critical dimension, can be usefully
reformulated in terms of BRST symmetry and its charge Q. Q is defined
by

Q =
∑

n

: cn

(
L(X)

n +
1
2
L(gh)

n

)
: (5)
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It is hermitean Q† = Q and its basic property is nilpotency

Q2 = 0

in critical dimension. The study of the physical spectrum can be reformu-
lated in terms of the cohomology of Q: the physical states of perturbative
string theory are the states of ghost number 1 that are annihilated by Q, de-
fined up to states obtained by acting with Q on any state of ghost number
0. They can be represented by the old physical states |φ, k〉 tensored with
the ghost factor c1|0〉.
With this at hand we can now turn to string field theory.

2.2. The SFT action and star product
The open string field theory action proposed by E.Witten years ago, [1], is

S(Ψ) = − 1
g2
o

∫ (
1
2
Ψ ∗QΨ +

1
3
Ψ ∗Ψ ∗Ψ

)
. (6)

with equation of motion

QΨ + Ψ ∗Ψ = 0 (7)

The above action is clearly reminiscent of the Chern–Simons action in 3D.
In this expression Ψ is the string field. It can be understood either as
a classical functional of the open string configurations Ψ(xµ(z)), or as a
vector in the Fock space of states of the open string theory. Although
the first representation is more pictorial, the second is far more effective
from a practical viewpoint. In the following we will consider for simplicity
only this second point of view. In the field theory limit it makes sense to
represent Ψ as a superposition of Fock space states with ghost number 1,
with coefficient represented by (infinite many) local fields,

|Ψ〉 = (φ(x) + Aµ(x)aµ†
1 + . . .)c1|0〉. (8)

The BRST charge Q is the same as the one introduced above for the first
quantized string theory.
One of the most fundamental ingredients is the star product. Physically it
represents the string interaction, that is the process of two strings coming
together to form a third string. More precisely the product of two string
fields Ψ1,Ψ2 represents the process of identifying the right half of the first
string with the left half of the second string and integrating over the over-
lapping degrees of freedom, to produce a third string which corresponds to
Ψ1 ∗Ψ2. This can be implemented in different ways, either using the clas-
sical string functional (as in the original formulation by Witten), or using
the three string vertex, or the conformal field theory language, [15].
Finally the integration in (6) corresponds to bending the left half of the
string over the right half and integrating over the corresponding degrees of
freedom in such a way as to produce a number.
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The following rules are to be complied with

Q2 = 0,∫
QΨ = 0,

(Ψ1 ∗Ψ2) ∗Ψ3 = Ψ1 ∗ (Ψ2 ∗Ψ3),

Q(Ψ1 ∗Ψ2) = (QΨ1) ∗Ψ2 + (−1)|Ψ1|Ψ1 ∗ (QΨ2), (9)

where |Ψ| is the Grassmannality of the string field Ψ, which, for bosonic
strings, coincides with the ghost number. The action (6) is invariant under
the BRST transformation

δΨ = QΛ + Ψ ∗ Λ− Λ ∗Ψ. (10)

Finally, the ghost numbers of the various objects Q,Ψ,Λ, ∗, ∫ are 1, 1, 0, 0,
−3, respectively.

Let us now see in more detail how to implement the star product. Let us
consider three unit semi-disks in the upper half za (a = 1, 2, 3) plane. Each
one represents the string freely propagating in semicircles from the origin
(world-sheet time τ = −∞) to the unit circle |za| = 1 (τ = 0), where the
interaction is supposed to take place. We map each unit semi-disk to a
120◦ wedge of the unit disk via the following conformal maps:

fa(za) = α2−af(za) , a = 1, 2, 3, (11)

where

f(z) =
(1 + iz

1− iz

) 2
3
. (12)

Here α = e
2πi
3 . In this way the three semi-disks are mapped to non-

overlapping (except along the edges) regions in such a way as to fill up
a unit disk centered at the origin. The curvature is zero everywhere except
at the center of the disk, which represents the common midpoint of the
three strings in interaction, see Fig.1

The interaction vertex is defined by means of a correlation function on the
unit disk D in the following way

∫
ψ ∗ φ ∗ χ = 〈f1 ◦ ψ(0) f2 ◦ φ(0) f3 ◦ χ(0)〉D (13)

So, calculating the star product amounts to evaluating a three point func-
tion on the unit disk.
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Figure 1: The conformal maps from the three unit semi-disks to the three-wedges
unit disk

3. Tachyon condensation

Following the rules of the previous section it is possible to explicitly com-
pute the action (6). For instance, in the low energy limit, where the string
field may be assumed to take the form (8), the action becomes an integrated
function F of an infinite series of local polynomials (kinetic and potential
terms) of the fields involved in (8):

S(Ψ) =
∫

d26xF (ϕi, ∂ϕi, ...). (14)

To limit the number of terms one has to limit the gigantic BRST symmetry
of OSFT, by choosing a gauge, which is usually the Feynman–Siegel gauge:
this means that we limit ourselves to the states that satisfy the condition:
b0|Ψ〉 = 0

Still the action with all the infinite sets of fields contained in Ψ remains
unwieldy. As it turns out, it makes sense to limit the number of fields in
Ψ, provided we insert all the fields up to a certain level. This is called level
truncation and turns out to be an excellent approximation and regulariza-
tion scheme in SFT. Let us see this in more detail for a string field which
includes the tachyon φ(x) and the vector field Aµ(x). The action turns out
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to be, [11],

S(0,1) =
1
g2
o

∫
d26x

(
−1

2
∂µφ∂µφ +

1
2
φ2 − 1

3
β3φ3 − 1

2
∂µAν∂

µAν (15)

− βφ̃ÃµÃµ − β

2
(∂µ∂ν φ̃ÃµÃν + φ̃∂µÃν∂νÃ

µ − 2∂µφ̃∂νÃ
µÃν)

)

where β = 3
√

3
4 is a recurrent number in SFT. One can see the kinetic term

for the tachyon and the gauge field (the latter is in the gauge fixed form
because the Feynman–Siegel gauge corresponds in the field theory language
to the Lorentz gauge) and the ‘wrong’ mass term for the tachyon. The fields
appearing in the interactions terms carry a tilde. This means, for any field
ϕ

ϕ̃(x) = e−ln(β−1∂µ∂µ)ϕ(x)

Incidentally, the fact that the interaction is formulated in terms of tilded
fields is a manifestation of the strong (exponential) convergence properties
of string theory in the UV.
Let us now consider the potential and study its minimum. We remind the
reader that this theory is supposed to represent the open strings attached
to a space–filling D–brane, the D25–brane. It may also represent lower
dimensional branes. In the CFT language such configurations are described
by boundary CFT’s. The first important remark (Sen 1998) is that this
potential is universal, it does not depend on the details of the theory, i.e.
on a particular boundary conformal field theory.
Let us concentrate on the D25–brane and evaluate the total energy of the
system brane + string modes. The brane has its intrinsic energy, whose
density is the tension τ , which in our conventional units (α′ = 1), is given
by τ = 1

2π2g2
o
. The string modes are represented by the action and, in a

static situation, their total energy is given by – the action. We precisely
wish to study this system in the vacuum. Since we want Lorentz invariance,
only Lorentz scalars can acquire a VEV. Therefore in (15) one must set the
tensor fields and all the derivatives to 0. Setting 〈φ〉 = t, what remains
of the action (divided by the total volume) can be written in terms of the
function u(t) as follows

−S

V
≡ τ u(t) = 2π2

(
−1

2
t2 +

1
3
β3t3

)
(16)

This is the total tachyon potential energy density extracted from the action.
The total energy of the system will be given by the sum of (16) and the
D25–brane tension, i.e.

U(t) = τ(1 + u(t)) (17)
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This potential is cubic, and it is easy to determine both local maximum
and minimum. The latter is given by

t = t0 =
1
β3

, u(t) ≈ −0.684 (18)

Let us recall that the first conjecture by Sen is that the tachyonic energy
should exactly compensate for the D25–brane tension. Therefore (18) does
not match this result, but we should remember that ours has been a very
rough approximation, since we have retained only two fields, the tachyon
and the Maxwell field. It can be shown that by adding more and more fields
to the string fields Ψ, that is truncating it at a higher level, the value of
u(t0) gets closer and closer to −1. The asymptotic situation is represented
in Fig.2

t

  t  o

U(t)

Figure 2: The tachyon potential

This was historically the first evidence that the first Sen’s conjecture is
correct.

4. The analytic solution

In this section I will explain how the first analytic solution to the SFT
equation of motion (7) was found, [7] (see also [9]) This solution is a string
state that specifies the (locally) stable vacuum, to be identified as the closed
string vacuum. In the oversimplified language of Fig. 2 it would correspond
to |Ψ0〉 = t0c1|0〉, but it actually identifies the vev of all the infinite many
scalar fields that feature in the most general string field.

To start with I have to introduce one of the important ingredients of this
solution, the wedge states.
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4.1. Wedge states and the new coordinate patch
Wedge states are particular surface states. The latter are states simply
defined by a map from the half–disk to the unit disk or, equivalently, to
the upper half plane. The definition is as follows: take any map f from the
half–disk to a surface Σ (inscribed in the unit disk or in the UHP); consider
any field φ and the state |φ〉 = φ(0)|0〉 in the Fock space of the theory; then
the surface state 〈S| is defined by

〈S|φ〉 = 〈f ◦ φ〉Σ (19)

The definition is implicit and may seem at first not very handy, but one
can often reduce the calculation to very simple test states |φ〉.
Wedge states are particularly simple. Their defining functions are

fr(z) =
(

1 + iz

1− iz

) 2
r

(20)

where, for simplicity, we take r to be a positive integer. This means that
the image of the map is a wedge of angle 2π

r in the unit disk. They can be
shown to satisfy the recursion relation

|r〉 ? |s〉 = |r + s− 1〉 (21)

In particular we see that calling |Ξ〉 the result of taking r → ∞ in |r〉,
we recover Ξ2 = Ξ. This may seem formal, but it can be shown to give
rise precisely to the sliver, which is a surface state defined by a wedge of
vanishing angle. So, in particular, wedge states approximate the sliver.
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Figure 3: Star product of two wedge states |3〉 ? |2〉 = |4〉

The star product of wedge states takes a particularly simple form if we use
the coordinate z̃ = arctan z (this we be referred to in the sequel as the
arctan frame). In this new representation a wedge state |r〉 is a cylinder in
the z̃ UHP, see fig.3. It is in fact an infinite strip in the imaginary direction
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of width r π
2 . It is formed by two external strips of width π

4 each (the ruled
strips in the figure), and an internal strip of width (r−1)π

2 . The rightmost
and leftmost sides are identified so as to form a cylinder. The star product
of two such states is simply obtained by dropping the rightmost ruled strip
of the first state and the leftmost ruled strip of the second and gluing the
two cut cylinders along the dashed line in Fig.3. In this language the wedge
state with r = 2 corresponds to the vacuum |0〉.
Pure wedge states, as we have just described them, are not enough to
describe the analytic solution we are looking for. We need wedge states
with insertion, that is wedge states with the insertion of an operator at
some point of the unruled patches. The |n〉 wedge state itself can be seen
as such.

|n〉 =
(

2
n

)L†0
|0〉 (22)

where L0 will be introduced in a moment.
These states will play a major role in what follows. What we need now
is exploit the new coordinate z̃ = arctan z to get a few basic definitions
and relations. To start with we define the Virasoro generators in the new
coordinate patch

L0 =
∮

dz̃

2πi
z̃ Tz̃z̃(z̃)

that is

L0 = L0 +
∞∑

k=1

2(−1)k+1

4k2 − 1
L2k (23)

as well as L±1. They satisfy [Ln,Lm] = (n−m)Ln+m.
Other useful operators are

B0 = b0 +
∞∑

k=1

2(−1)k+1

4k2 − 1
b2k

B1 = b1 + b−1

and

B ≡ BL
1 =

1
2
B1 +

1
π

(
B0 + B†0

)

BR
1 =

1
2
B1 − 1

π

(
B0 + B†0

)
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Using K1 = L1 + L−1 we can introduce

K ≡ KL
1 =

1
2
K1 +

1
π

(
L0 + L†0

)

KR
1 =

1
2
K1 − 1

π

(
L0 + L†0

)

For instance we have the ‘semi–derivation’ rules

KL
1 (Ψ1 ? Ψ2) = (KL

1 Ψ1) ? Ψ2

KR
1 (Ψ1 ? Ψ2) = Ψ1 ? (KR

1 Ψ2)

and the wedge states can also be written as

|n〉 = e
π
2
(n−1)K |1〉

From this equation and (22) we see that it makes sense to consider n a
real variable rather than an integer, and therefore also to differentiate with
respect to it.

4.2. The solution
Schnabl chose the gauge B0|Ψ〉 = 0, rather than the Feynman–Siegel one.
He than made the ansatz

Ψ = lim
N→∞

(
N∑

n=0

ψ′n − ψN

)
(24)

where

ψn = c1|0〉 ? B|n〉 ? c1|0〉 (25)

and the prime denotes derivative with respect to n. The state ψn is made
out of wedge states with insertions of the field c and of B. In particular for
n = 0 we have

ψ0 = (cBc)(0)|0〉, ψ′0 = (cBKc)(0)|0〉
We remark that in the RHS of (24) the second term −ψN is added only for
regularization purposes.
The solution is obtained as a limit and it is constructed as

Ψλ =
∞∑

n=0

λn+1ψ′n, (26)

This is a pure gauge solution (action=0) for λ < 1, but it is not pure gauge
anymore for λ = 1 and it is the good solution. We will not prove it here.
Rather we concentrate on the evidence about first Sen’s conjecture.
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4.3. First and second Sen’s conjectures
From the equation of motion we get

〈Ψ, Q Ψ〉 = −〈Ψ, Ψ ? Ψ〉 (27)

This equation has to be explicitly checked over the solution (24) – a rather
nontrivial task –, because one of the subtleties of SFT is that, even if |Ψ〉
is a solution to the equation of motion, it is not automatically guaranteed
that (27) holds.
On the other hand, from the explicit form of the solution one gets

〈Ψ, QΨ〉 = − 3
π2

Therefore, finally, the total energy of the string modes is (V is the total
26–th dimensional volume):

E = −S

V
=

1
g2
oV

(
1
2
〈Ψ, Q Ψ〉+

1
3
〈Ψ, Ψ ? Ψ〉

)
= − 1

2π2g2
0

(28)

which is precisely the negative of the D25–brane tension τ .
Let us now pass to briefly illustrate the proof of the second conjecture,
[8]. The purpose is to show that the cohomology around Schnabl’s solution
is trivial. Relabeling Schnabl’s solution as Ψ0, we are looking now for
solutions to (7) of the type Ψ0 + ψ, linearized on ψ. It is easy to see that
the relevant (linearized) equation of motion is

Qψ ≡ Qψ + Ψ0 ? ψ − (−1)|ψ|ψ ? Ψ0 (29)

This defines a new BRST operator Q (indeed Q2 = 0) and defines the
cohomology around Schnabl’s solution. The purpose is to prove that this
cohomology is empty.
Let us introduce the symbol

Wr = |r + 1〉
Next let us define the state

A = − 2
π

B

∫ 1

0
Wr dr (30)

We make use of the fact that wedge states can be defined for any real label
r, not just for an integral r. It is possible to prove that

QA = |1〉 (31)
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where the RHS represents the wedge state with r = 1. This is the identity
state and satisfies

|1〉 ? Φ = Φ ? |1〉 = Φ

for any string field Φ.
Now suppose ψ satisfies Qψ = 0, then, using these results, we get

Q(A ? ψ) = (QA) ? ψ −A ? (Qψ) = |1〉 ? ψ = ψ

which means that ψ is BRST trivial. This is a very general result. It
implies not only that the cohomology of ghost number 1 is trivial (i.e.,
there is no physical perturbative string mode in the new vacuum), but that
the cohomology is trivial for any ghost number state.

4.4. The Erler–Schnabl solution
An interesting variant of the Schnabl solution has been proposed recently
by T.Erler and M.Schnabl, [17]. To better describe it we shift from the
language of string fields and operators K,B, c used so far to an ’algebra
with operator’ language defined as follows. Let us set

K
π

2
KL

1 |I〉, B =
π

2
BL

1 |I〉, c = c

(
1
2

)
|I〉, (32)

in the so–called sliver frame (obtained by mapping the UHP to an infinite
cylinder C2 of circumference 2, by the sliver map f(z) = 2

π arctan z). Then,
with respect to the star product (understood from now on), these states
form the algebra

{B, c} = 1, KB = BK, [K, c] = ∂c, {B, ∂c} = 0, (33)

where Q operates as follows

QB = K, Qc = c∂c (34)

In terms of this algebra with operator, the new solution, [17], is given by

ψ0 =
1

1 + K
c(1 + K)Bc = c− 1

1 + K
Bc∂c, (35)

and can be formally obtained via a ‘gauge transformation’ of the perturba-
tive vacuum

ψ0 = U0QU−1
0 (36)

U0 = 1− 1
1 + K

Bc (37)

U−1
0 = 1 +

1
K

Bc. (38)
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This gauge transformation is in fact singular (see above) and this is the
reason why the solution is nontrivial. The energy of this solution turns out
to be the correct one (28). Not only the solution but also the homotopy
operator A is very simple: A = B

K+1 .

As we will see below, the Erler–Schnabl solution lends itself to a rather
simple matter deformation, which turns out to be the searched for lump
solution.

5. The third conjecture

The third conjecture predicts the existence of lower dimensional solitonic
solutions or lumps, interpreted as Dp–branes, with p < 25. These solu-
tions bring along the breaking of translational symmetry and background
independence. The evidence for the existence of such solutions collected
in the past years is overwhelming. It has been possible to find them with
approximate methods or with exact methods in related theories. Probably
the most suggestive and significant solutions were found in the framework
of the so called vacuum string field theory (VSFT). VSFT, [18, 19], is an
approximate version of Witten’s open SFT which is thought to describe
the latter at the minimum of the tachyonic potential. In this theory mat-
ter and ghost sectors split and essentially only the matter part is relevant.
The lower dimensional branes make their appearance as projector projec-
tors of the star algebra. This results in a very elegant formulation, [16, 13].
Although the relation of VSFT to the true theory is far from clear, these
results have been very inspiring in the search for analytic solutions.

5.1. Analytic lump solutions
In a recent paper, [20], a general method has been proposed to obtain new
exact analytic solutions in open string field theory, and in particular so-
lutions that describe inhomogeneous tachyon condensation. The method
consists in translating an exact renormalization group (RG) flow gener-
ated in a two–dimensional world–sheet theory by a relevant operator, to
the language of OSFT. The so-constructed solution is a deformation of the
Erler-Schnabl solution described above. It has been shown in [20] that, if
the operator has suitable properties, the solution will describe tachyon con-
densation in specific space directions, thus representing the condensation
of a lower dimensional brane. In the following, after describing the general
method, we will focus on a particular solution, generated by an exact RG
flow analyzed first by Witten, [21]. In [20] it has been shown that this
solution satisfies the closed string overlap condition and, on the basis of
the analysis carried out in the framework of 2D CFT in [22], we expect it
to describe a D24 brane, with the correct ratio of tension with the starting
D25 brane.
Let us see how to construct such kind of lump solutions. To start with we
enlarge the K, B, c algebra by adding a (relevant) matter operator

φ = φ

(
1
2

)
|I〉. (39)
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with the properties

[c, φ] = 0, [B,φ] = 0, [K, φ] = ∂φ, (40)

such that Q has the following action:

Qφ = c∂φ + ∂cδφ. (41)

It can be easily proven that

ψφ = cφ− 1
K + φ

(φ− δφ)Bc∂c (42)

does indeed satisfy the OSFT equation of motion

Qψφ + ψφψφ = 0 (43)

It is clear that (42) is a deformation of the Erler–Schnabl solution, which
can be recovered for φ = 1.
Much like in the Erler-Schnabl case, we can view this solution as a singular
gauge transformation

ψφ = UφQU−1
φ (44)

where

Uφ = 1− 1
K + φ

φBc, U−1
φ = 1 +

1
K

φBc, (45)

In order to prove that (42) is a solution, one demands that (cφ)2 = 0, which
requires the OPE of φ at nearby points to be not too singular.
It is instructive to write down the kinetic operator around this solution.
With some manipulation, using the K, B, c, φ algebra it is possible to show
that

Qψφ

B

K + φ
= Q

B

K + φ
+

{
ψφ,

B

K + φ

}
= 1.

So, unless the homotopy–field B
K+φ is singular (as is the case for B

K and
the original Q), the solution has trivial cohomology, which is the defining
property of the tachyon vacuum [8]. On the other hand, in order for the
solution to be well defined, the quantity 1

K+φ(φ−δφ) should be well defined.
In full generality we thus have a new nontrivial solution if

• 1
K+φ is divergent

• 1
K+φ(φ− δφ) is finite.
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We will now give some heuristic sufficient conditions for φ in order to comply
with the above requirement. To be concrete we parametrize the worldsheet
RG flow, referred to above, by a parameter u, where u = 0 represents the
UV and u = ∞ the IR, and label φ by φu, with φu=0 = 0. Then we require
for φu the following properties under the coordinate rescaling ft(z) = z

t

ft ◦ φu(z) =
1
t

φtu

(z

t

)
. (46)

and, most important, that the partition function

g(u) ≡ Tr[e−(K+φu)] =
〈
e−

∫ 1
0 ds φu(s)

〉
C1

, (47)

satisfies the asymptotic finiteness condition

lim
u→∞

〈
e−

∫ 1
0 ds φu(s)

〉
C1

= finite. (48)

Barring subtleties, this should satisfy the two above conditions, i.e. guar-
antee not only the regularity of the solution but also its ’non-triviality’, in
the sense that if this condition is satisfied, it cannot fall in the same class
as the ES tachyon vacuum. solution.
We will consider in the sequel a specific relevant operator φu and the corre-
sponding SFT solution. It is based on the exact RG flow studied by Witten
in [21], see also [22], and based on the operator (defined in the cylinder CT
of width T in the arctan frame)

φu(s) =
u

2
(X2(s) + 2 lnu + 2A) (49)

where A is a constant first introduced in [8]. In C1 we have

φu(s) =
u

2
(X2(s) + 2 lnTu + 2A) (50)

and on the unit disk D,

φu(θ) =
u

2
(X2(θ) + 2 ln

Tu

2π
+ 2A) (51)

If we set

gA(u) = 〈e−
∫ 1
0 ds φu(s)〉C1 (52)

we have

gA(u) = 〈e−
1
2π

∫ 4π
0 dθ u

(
X2(θ)+2ln u

2π
+2A

)
〉D
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According to [21],

gA(u) = Z(u)e−u(ln u
2π

+A) (53)

Requiring finiteness for u →∞ we get A = γ − 1 + ln2π, which implies

gA(u) ≡ g(u) =
1

2
√

π

√
uΓ(u)eu(1−lnu) (54)

and

lim
u→∞ g(u) =

1√
2

(55)

Moreover, as it turns out, δφu = −u, and so:

φu − δφu = u∂uφu(s) (56)

Therefore the φu just introduced satisfies all the requested properties. Ac-
cording to [22], the corresponding RG flow in BCFT reproduces the correct
ratio of tension between D25 and D24 branes. Consequently ψu ≡ ψφu

should represent a D24 brane solution.
In SFT there are two gauge invariant quantities we can extract from a
solution like ψu. One is the closed string overlap, the other is the energy.
The simplest gauge invariant quantity that can be explicitly computed is
the closed string overlap, i.e. the overlap between the solution and an on–
shell closed string state inserted at the midpoint of the identity string field.
According to Ellwood, [23], this quantity should be equal to the shift in
the closed string one–point function between the new BCFT represented by
the new solution and the reference BCFT represented by the perturbative
vacuum. In full generality, if ψ1 represents the new BCFT1, expressing
everything on a canonical cylinder of width 1, we expect to find

Tr[Vc ψ1] = 〈Vc(i∞)c(0)〉(BCFT0)
C1

− 〈Vc(i∞)c(0)〉(BCFT1)
C1

. (57)

where Vc is the vertex operator generating the on-shell closed string state.
This relation has in fact been proved to hold for our solution ψu in [20].
As for the energy its expression for the lump solution was determined in [20]
by evaluating a three–point function on the cylinder CT of circumference
T in the arctan frame. It equals −1

6 times the following expression

〈ψuψuψu〉 = −
∫ ∞

0
dt1dt2dt3E0(t1, t2, t3)u3g(uT )

{(
− ∂uT g(uT )

g(uT )

)3

+
1
2

(
− ∂uT g(uT )

g(uT )

)(
G2

uT (
2πt1
T

) + G2
uT (

2π(t1 + t2)
T

) + G2
uT (

2πt2
T

)
)

+ GuT (
2πt1
T

)GuT (
2π(t1 + t2)

T
)GuT (

2πt2
T

)

}
(58)
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Here g(u) is as above, and represents the partition function of the under-
lying matter CFT on the boundary of the unit disk. Gu(θ) represents the
correlator on the boundary, first determined by Witten, [21]:

Gu(θ) =
1
u

+ 2
∞∑

k=1

cos(kθ)
k + u

(59)

Finally E0(t1, t2, t3) represents the ghost three–point function in CT .

E0(t1, t2, t3) = 〈Bc∂c(t1 + t2)∂c(t1)∂c(0)〉CT

= − 4
π

sin
πt1
T

sin
π(t1 + t2)

T
sin

πt2
T

(60)

This expression is expected to take the form

−1
6
〈ψu ψu ψu〉 = −E(UV ) + E(IR), (61)

where E(UV ) represents the total energy of the Erler–Schnabl solution, while
E(IR) is the lump energy. Since the energy E(UV ) is the D25 brane tension
times the volume, which is infinite, we expect to find a divergent contri-
bution when u → 0. This is in fact what happens. In [24] the expression
(58) has been evaluated. It has been analytically computed up to the point
permitted by our present mathematical tools. The divergent behaviour in
the UV has been found. After subtracting it, the remaining expression has
been numerically evaluated. The result is 0.050004. This is compatible
with the expected value of the D24 brane tension1

TD24 =
1

2π2
(62)

within the errors of the numerical approximation.
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