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Abstract

Singletons are those unitary irreducible modules of the Poincaré or
(anti) de Sitter group that can be lifted to unitary modules of the
conformal group. Higher-spin algebras are the corresponding real-
izations of the universal enveloping algebra of the conformal algebra
on these modules. They appear in a wide variety of areas of theo-
retical physics: AdS/CFT correspondence, higher-derivative symme-
tries, higher-spin multiplets, infinite-component Majorana equations,
etc. Singletons and higher-spin algebras are reviewed through a list
of their many equivalent definitions in order to approach them from
various perspectives. The focus of this short but self-contained intro-
duction is on the symmetries of a singleton: its maximal algebra and
the manifest realization thereof.
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1. Plan of a singleton sightseeing tour

The celebrated singletons are rather “remarkable representations”, as coined
by Dirac in his seminal paper [1] on the subject. Indeed, these represen-
tations of the anti de Sitter spacetime isometry group possess several sur-
prising properties which are so exceptional that they distinguish singletons
from all other such representations. Several of these properties are reviewed
here, thereby providing an elementary introduction to singletons through
a list, presumably inexhaustive, of their distinct but equivalent definitions.
Exhibiting the many faces of singletons could give some flavor of their
ubiquitous appearances in such seemingly unrelated areas of mathematical
physics as the AdS/CFT correspondence, the hydrogen atom spectrum, the
infinite-component Majorana equation, the electric-magnetic duality, etc.
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An exhaustive bibliographical survey of the wide range of results and ap-
plications for singletons is by no means attempted here.1 On the contrary
the main focus of this short introduction is on the symmetry algebras of
bosonic singletons in any dimension and on their manifest realizations. No
prior knowledge of singletons is assumed, but some familiarity with the
representation theory of Lie algebras is welcome. The plan is as follows:
In order to be as self-contained as possible, the isometry groups of the
anti de Sitter spacetime and its conformal boundary are quickly reviewed
in Section 2, as well as the corresponding representation theory classify-
ing the elementary particles that may live on these spaces. Then comes
the section 3 which presents many faces of singletons: lowest weight mod-
ules (subsection 3.1), irreducible modules of isometry subalgebras (subsect
3.2), fields on the conformal boundary (subsect 3.3), fields on the am-
bient space (subsect 3.4) and kernels of the Howe dual algebra (subsect
3.5). The simplest example of singleton is the scalar one and it will serve
throughout this review as a useful illustration. Finally, the section 4 re-
views the various definitions of bosonic higher-spin algebras: as realizations
of universal enveloping algebras (subsect 4.1), as centralizers of Howe dual
algebras (subsect 4.2), as invariants of Howe dual algebras (subsect 4.3),
as algebras of symmetries (subsect 4.4). The final message of this tour is
that although higher-spin algebras can be defined in many mathematically
equivalent ways, their most physical interpretation is presumably as max-
imal symmetry algebras of free singletons, as motivated by the AdS/CFT
correspondence in the exotic strongly-curved/weakly-coupled regime.

2. Elementary particles on anti de Sitter spacetime

2.1. Anti de Sitter spacetime
The most transparent realization of AdSn+1 (n > 1) is via a global isometric
embedding in a flat ambient space:
• The ambient space Rn,2 is endowed with the

– Cartesian coordinates XA (where A = 0, 0′, 1, 2, . . . , n) and
– (“mostly plus”) metric ηAB = diag(−1,−1,+1, +1, . . . , +1).

• The anti de Sitter spacetime AdSn+1 is the codimension one quadric
(more precisely, a one-sheeted hyperboloid)

ηABXAXB = −R2 ,

where R > 0 is the curvature radius, endowed with the induced metric.
So the isometry algebra is manifestly the real Lie algebra o(n, 2) =
spanR{JAB} which can be presented by its generators (the ambient “angu-
lar momenta”)

JAB = −JBA (where A,B = 0, 0′, 1, 2, . . . , n).
1The bibliography has been deliberately focused either on some recent general reviews

with indications of the precise location of the relevant information, or on some old seminal
papers, in order to give some flavor of the early history though from a modern viewpoint.
I do apologize to the experts for the incompleteness of the bibliography.
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modulo the commutation relations

[JAB,JCD] = i ηBCJAD + antisymetrizations .

This algebra is linearly realized on Rn,2 through the generators (the
ambient “orbital angular momenta”)

JAB = XAPB −XBPA

where
PA = − i

∂

∂XA
.

2.2. Conformal boundary
2.2.1. Conformal boundary of anti de Sitter spacetime
The most transparent realization of the conformal boundary ∂AdSn+1 of
the anti de Sitter spacetime AdSn+1 is via its global (conformal isometric)
embedding in the projectivization of the ambient space Rn,2:

• The ambient space is now the projective space P(Rn,2) ∼= RPn+1 en-
dowed with the

– Homogeneous coordinates XA (where A = 0, 0′, 1, 2, . . . , n),
– Equivalence relation XA ∼ λXA (for any λ ∈ R0)
– Conformal metric (i.e. the equivalence class of) ηAB

As usual, points of the projective space P(Rn,2) are rays of Rn,2.

• The Dirac hypercone2 is the codimension one quadric (null cone)

ηABXAXB = 0

quotiented by the equivalence relation, endowed with the induced con-
formal metric. This conformal space is the conformal boundary of the
anti de Sitter spacetime AdSn+1.

Geometrically, the points of ∂AdSn+1 are null rays of the ambient space
Rn,2. Heuristically, the boundary of the anti de Sitter spacetime is the
asymptotic (i.e. located “at infinity”) region of intersection between the
hyperboloid and the hypercone.
So the conformal isometry algebra of the conformal boundary ∂AdSn+1

is manifestly the real Lie algebra o(n, 2) linearly realized on P(Rn,2) through
the (“ambient orbital angular momentum”) generators and is linearly re-
alized on Rn,2 through the generators JAB = X[APB], where the square
bracket denotes the antisymmetrization.

2This construction is the Euclidean analogue of the “Möbius model” in the mathe-
matical literature. It was introduced a long time ago in physics by Dirac in a paper [2]
which still remains a splendid introduction to the ambient formulation.
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2.2.2. Conformal isometries revisited
The light-cone coordinates

X± := X0′ ±Xn

together with the inhomogeneous coordinates

xµ := Xµ/X− (where µ = 0, 1, 2, . . . , n− 1)

provide a convenient parametrization of the Dirac hypercone in a neigh-
borhood such that X− 6= 0. The hyperplane X− = 0 may be taken as the
“hyperplane at infinity” to be added to the affine space Rn+1 in order to
construct RPn+1. If one identifies the conformal boundary of AdSn+1 with
the conformal compactification of Rn−1,1 then the “hyperplane at infinity”
is indeed particularized.

The infinitesimal generators decompose as follows:

• The stabilizer of any hyperplane X− =constant 6= 0, i.e. the Poincaré
subalgebra

io(n, 1) = spanR{Pµ,Jµν} = Rd B o(n− 1, 1)

which can be presented
– by its generators

Pµ := J+µ/2 , Jµν = −Jνµ (µ, ν = 0, 1, 2, . . . , n− 1)

– modulo the commutation relations

[Pµ,Pν ] = 0 ,

[Pµ,Jνρ] = i ηµνPρ + antisymetrization ,

[Jµν ,Jρσ] = i ηνρJµσ + antisymetrizations .

• The generator of ambient boosts in the plane 0′n ↔ +− which preserve
the hyperplane at infinity, i.e. the generator of dilatation

∆ := J+−

• The remaining generators, corresponding to the infinitesimal special
conformal transformations

Kµ := J−µ
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2.2.3. Distinct constant curvature spacetimes
as an identical conformal space

Actually, the conformal boundary of AdSn+1 may be identified with any
of the three constant curvature spacetimes (supplemented by “points at
infinity”). These three spacetimes are geometrically realized as quadrics
obtained by intersecting the hypercone with an affine hyperplane:

• Minkowski spacetime Rn−1,1 endowed with the Cartesian coordi-
nates xµ as before.

– Paraboloid: intersection with a hyperplane orthogonal to a light-
like direction, say X− =constant 6= 0

– Isometry algebra: Poincaré algebra io(n− 1,1)
• de Sitter spacetime dSn

– Hyperboloid: intersection with a hyperplane orthogonal to a
time-like direction, say X0′ = R 6= 0

– Isometry algebra: o(n,1)
• Anti de Sitter spacetime AdSn

– Hyperboloid: intersection with a hyperplane orthogonal to a
space-like direction, say Xn = R 6= 0

– Isometry algebra: o(n− 1,2)
The conformal compactifications of the three distinct constant curvature
spacetimes Rn−1,1, dSn and AdSn are identical: they reproduce the flat
conformal space ∂AdSn+1. Indeed, all of these spacetimes are conformally
flat and they possess the same conformal isometry algebra o(n, 2). It is
important to emphasize this point because, although most of the time the
conformal boundary ∂AdSn+1 is identified with the conformal compactifi-
cation of Minkowski spacetime Rn−1,1, from the point of view of conformal
geometry it can equivalently be taken to be the conformal compactification
of (anti) de Sitter spacetime (A)dSn. This remark is useful because most
results which will be mentioned here equally apply to all constantly curved
spacetimes.

2.3. Unitary irreducible representations
2.3.1. Isometry algebra of anti de Sitter spacetime
The classification of the free elementary particles on the anti de Sitter
spacetime M = AdSn+1 tantamounts to the classification of the irreducible
unitary modules of o(n, 2). Strictly speaking, the Hilbert space of physical
states is usually the direct sum of two irreducible modules: the ones with
either positive or negative energy corresponding respectively to the particle
and its antiparticle. Therefore, if the sign of the energy unspecified in the
sequel, then the direct sum of the positive energy module and its conjugate
should be understood.

The maximal compact subalgebra o(2)⊕o(n) of the real Lie algebra
o(n, 2) corresponds to the
• time translations generated by the Hamiltonian E = M0′0
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• spatial rotations generated by Jij (where i, j = 1, 2, . . . , n)
The remaining generators can be recast in the form of ladder operators

J±j = J0j ∓ iJ0′j ,

raising or lowering the energy (= eigenvalue of E) by one unit. Indeed,
the real Lie algebra o(n, 2) can be presented equivalently

• by the generators E, J±i , Jjk (where i, j, k = 1, 2, . . . , n)
• modulo the commutation relations

[
E,J±i

]
= ±J±i ;

[
Jij ,J

±
k

]
= 2iδk[jJ

±
i][

J−i ,J+
j

]
= 2(iJij + δijE)

[Jij ,Jkl] = iδjkJil + antisymetrizations

2.3.2. Orthogonal algebra
The classification of the irreducible unitary modules of o(n, 2) requires the
knowledge of the classification of the irreducible unitary modules of o(n),
which can be summarized as follows (see e.g. the section 3 of [3] for more
details and references):

Irreducible unitary modules of the orthogonal group: Let n > 3
be a positive integer and [n2 ] denote the integer part of n

2 . Any unitary
irreducible module D`1,...,`[ n

2 ]
of O(n) is a finite-dimensional highest (and

lowest) weight module which is
• either tensorial or spinorial,
• labeled by a partition of an integer

|`| = `1 + `2 + . . . + `[n
2
]

in [n2 ] parts (where `1 > `2 > . . . > `[n
2
] > 0).

The converse is also true.
A partition of |`| in p parts is usually depicted as a Young diagram made
of |`| boxes arranged in p left-justified rows of non-increasing lengths

`1 > `2 > . . . > `p > 0 .

A renowned example of o(n)-module is the spin-s module Ds correspond-
ing to a partition of |`| = s ∈ N in one part corresponds either to a
• tensorial moduleDs of o(n) spanned by the components of a symmetric

traceless tensor of rank s, or a
• spinorial module Ds+1/2 of o(n) spanned by the components of a sym-

metric (gamma)-traceless tensor-spinor of rank s.
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2.3.3. Irreducible modules of the isometry algebra
A Verma module V(E0; `1, . . . , `[n

2
]) of o(n, 2) for E0 positive (or negative)

• is obtained by the action of the universal enveloping algebra
U(o(n, 2)) on the

• Lowest (or highest) weight vector |E0; `1, . . . , `[n
2
]〉 of o(n, 2),

which is defined as a
– Lowest (or highest) energy E0 state

J−i |E0; `1, . . . , `[n
2
]〉 = 0

– Lowest (or highest) weight vector of o(n) labeled by

`1 > `2 > . . . > `[n
2
] > 0.

For the general definitions and properties of Verma modules, the reader
may look for instance at the concise review in [4]. The ground states of
energy E0 span an irreducible finite-dimensional o(n)-module labeled by
the above partition.
For physical reasons, an elementary particle on anti de Sitter spacetime is
taken to be a positive-energy (lowest weight) unitary module, while its an-
tiparticle is its opposite counterpart, so a negative-energy (highest weight)
unitary module. Both cases can be described as extremal weight unitary
modules.

Irreducible unitary modules of the isometry algebra: Any extremal
weight irreducible module D(E0; `1, .. , `[n

2
]) of o(n, 2) is a quotient of the

Verma module V(E0; `1, .. , `[n
2
]) by its maximal submodule V(E′

0; `
′
1, .. , `

′
[n
2
]).

Unitarity imposes some restrictions on the possible values of the extremal
energy. For more details on the n = 3 unitary irreducible modules, an
excellent pedagogical introduction is [5].

3. Singletons: various definitions

3.1. Singletons as lowest weight modules
Singletons form the very exceptional subclass of the irreducible unitary
modules of the algebra o(n, 2) that saturate the unitary bound and whose
ground states are characterized by a rectangular Young diagram of height
k = n

2 (when n is even). The group-theoretic definition of singletons dates
back to the seminal works of Dirac [1] and Flato & Frønsdal [6]. The higher-
dimensional generalization was further developed by a variety of authors
(a self-contained and rather complete treatment of the generic case can be
found in [7]):

Definition: A positive-energy singleton of AdSn+1 is a lowest weight
unitary irreducible module of o(n, 2) such that:
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• When n is odd, the spin is
– either s = 1

2 : D(n−1
2 ; 1

2) called Di or spinor singleton

– or s = 0: D(n
2 − 1; 0) called Rac or scalar singleton

• When n is even, the (generalized) spin s is
– any (half)integer: D(s+n

2−1 ; [s], . . . , [s]) called spin s singleton
and labeled by a partition in n

2 equal parts, i.e. a rectangular
Young diagram made of n

2 rows of length [s].

From now on, whenever singletons of spin s > 1 will be mentioned, the
integer n will always be implicitly assumed to be even, as it should.
As a nice illustration, the scalar singleton may deserve a more detailed
discussion. A short review of scalar singletons can be found in [8]. The
scalar singleton corresponds to the case of a lowest weight vector |E0; 0〉
of o(n, 2) annihilated by all generators of the o(n) subalgebra, except the
energy:

(E− E0)|E0; 0〉 = 0 , Jij |E0; 0〉 = 0 , J−i |E0; 0〉 = 0 .

Thus the Verma module is

V(E0; 0) = spanR
{
J+

i1
. . .J+

is
|E0; 0〉 | s ∈ N

}

It can be shown (see e.g. [5] for n = 3) that unitarity implies E0 > n
2 − 1

(or E0 = 0 which corresponds to the trivial representation of o(n, 2) ).
For the special value E0 = n

2 −1 saturating the unitarity bound, the vector
δijJ+

i J+
j |E0; 0〉 is a primitive null vector. The scalar singleton is the unitary

module obtained by quotienting the maximal submodule

V
(n

2
+ 1; 0

) ∼= spanR
{
δi1i2J+

i1
. . .J+

is
|E0; 0〉 | s ∈ N

} ⊂ V
(n

2
− 1; 0

)

from the Verma module. Concretely, this corresponds to factoring out the
trace terms from the Verma module:

D
(n

2
− 1; 0

) ∼=
spanR

{
J+

i1
. . .J+

is
|n/2− 1; 0〉 | δi1i2J+

i1
. . .J+

is
|n/2− 1; 0〉 ∼ 0

}

3.2. Singletons as irreducible modules of isometry subalgebras
The following theorem of Angelopoulos & Laoues [7] extends to any n > 3
the previous result for the case n = 3 of Angelopoulos, Flato, Frønsdal &
Sternheimer [9].
Theorem (Angelopoulos & Laoues, 1998): A positive (or negative)
energy singleton of AdSn+1 is a non-trivial lowest (or highest) weight uni-
tary irreducible o(n, 2)-module that remains irreducible (or, at most, splits
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in two) under restriction to any of the following subalgebras: io(n − 1, 1),
o(n, 1) and o(n − 1, 2). Conversely, a singleton on ∂AdSn+1 is a unitary
irreducible (at most, a sum of two) of any of the previous subalgebras, that
can be lifted to a unitary module of o(n, 2).

Heuristically, this means that singletons of AdSn+1 are those fields:
• whose local physical degrees of freedom sit on its conformal boundary

(so that one may also call them singletons on ∂AdSn+1), and
• which are preserved by the conformal symmetries in spacetime dimen-

sion n.
The extremal weight unitary irreducible o(n, 2)-modules that are not single-
tons of AdSn+1 provide the genuine elementary particles on AdSn+1.
The fact that elementary particles may live both on the boundary and in
the bulk of anti de Sitter spacetime is the very basis of the AdSn+1/CFTn
correspondence.
Let the conformal boundary ∂AdSn+1 be identified with the conformal
compactification of Rn−1,1. The following theorem was found by Siegel in
[10] but the entirely complete and rigorous proof was given later in [7].
Theorem (Siegel, 1989): A positive-energy singleton on ∂AdSn+1 is a
positive-energy massless unitary irreducible module of io(n − 1, 1) induced
(à la Wigner) by a finite dimensional irreducible representation of the stabi-
lizer io(n−2) labeled by a partition in n

2−1 equal parts, i.e. by a rectangular
Young diagram made of n

2 − 1 rows of length [s].

The spin s singleton on the conformal compactification of Rn−1,1, seen as
a representation of the Poincaré subalgebra io(n− 1, 1), is called for
• n = 4, the helicity s representation, and for
• higher even n and s > 1, a spin s duality-symmetric representa-

tion when n/2 is even or chiral representation when n/2 is odd,
because the corresponding field strength span an irreducible o(n−1, 1)-
module described by a rectangular Young diagram made of n

2 rows for
which Hodge self-duality may be defined (more information on this
point is provided in the the next subsection).

3.3. Singletons as fields on the conformal boundary
Singletons live on the conformal boundary so they can be described as fields
on the corresponding compactified spacetimes. The simplest example is the
scalar singleton which can be described as a massless (i.e. harmonic) scalar
field φ(x) on Minkowski spacetime Rn−1,1 of conformal weight 1− n

2 so that
the d’Alembert equation

¤Rn−1,1 φ(x) = 0 is preserved by the conformal algebra o(n, 2) .

Equivalently, the scalar singleton may be described on (A)dSn through a
linear wave equation involving the conformal (or Yamabe) Laplacian

(
¤(A)dSn

± n(n− 2)
4R2

)
φ(x) = 0
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where ¤ denotes the Laplace-Beltrami operator.
The spin-s singleton io(n− 1, 1)-module can be realized as a space of har-
monic irreducible multiforms [11] (see e.g. the section 5 of [3] for a review
of the general construction of Poincaré modules). For n = 4, this construc-
tion reproduces the famous Bargmann-Wigner equations which are known
to be conformally symmetric since a long time ago [12]. For definiteness,
one will focus on tensorial singletons, i.e. integer spin s ∈ N. Let θµ

i be
a set (where µ, ν = 0, 1, 2, . . . , n − 1 and i = 1, 2, . . . , s − 1, s) of fermionic
coordinates

θµ
i θν

j + θν
j θν

i = 0 ,

on Π(Rn,2 ⊗ Rs) (where Π reverses the Grassmann parity).

Definitions:A (differential) multiform on Minkowski spacetime Rn−1,1 is

• a function ψ(xµ, θν
i ) on the superspace Rn−1,1 ⊕ Π(Rn−1,1 ⊗ Rs), i.e.

tensor fields on Rn−1,1 with components described by a product of s
columns. A multiform is:

• closed if it is annihilated by all operators di = ϑµ
i

∂
∂xµ

• coclosed if it is annihilated by all operators d†i = ∂
∂ϑi

µ

∂
∂xµ .

• harmonic if it is closed and coclosed.

The components of a multiform span an irreducible GL(n)-module de-
scribed by a rectangular Young diagram made of s columns and n

2 + 1
rows iff it is annihilated by the operators θµ

i
∂

∂θµ
j
− δj

i
n
2 that span the al-

gebra gl(s). Moreover, it is further irreducible under O(n − 1, 1) iff it is
also annihilated by the operators θµ

i θj
µ and ∂

∂θµ
i

∂

∂θj
µ

which, together with the

previous ones, span the algebra o(2s).

Poincaré covariant equations for singletons [11]: The spin-s sin-
gleton io(n − 1, 1)-module can be realized as a space of multiforms ψ(x, θ)
on the Minkoswki spacetime Rn−1,1 which are harmonic and whose compo-
nents span an irreducible o(n−1, 1)-module D[s],...,[s] labeled by a rectangular
Young diagram made of [s] columns and n

2 rows.

Remark: The multiform associated with a singleton of spin s > 1 is
physically interpreted as its fieldstrength (or curvature tensor). An
irreducible O(n − 1, 1)-module labeled by a rectangular Young diagram
made of [s] columns and n

2 rows decomposes a sum of two irreducible o(n−
1, 1)-modules when n/2 is odd. This subtlety is related to the involutive
property of the Hodge operator. In order to treat both cases uniformly,
one should consider the complexification of the O(n − 1, 1)-module when
n/2 is even. Then both modules are eigenspaces (of eigenvalue ±1) of the
involutive Hodge duality, with a factor i included when n/2 is even (see
e.g. the article [13] containing a concise introduction to the s = 1 case).
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So the singleton modules of spin s > 1 are either said to be duality-
symmetric when n/2 is even or chiral when n/2 is odd. This duality prop-
erties extend to constantly curved spacetimes, therefore the singletons of
spin s > 1 are those finite-component unitary irreducible representations of
one of the isometry algebras io(n− 1, 1), o(n, 1) or o(n− 1, 2) which are ei-
ther duality-symmetric or chiral. This deep connection between conformal
symmetry and electric-magnetic duality somehow explains the appearance
of singletons in many celebrated models of high-energy theoretical physics,
such as maximally supersymmetric theories.

3.4. Singletons as fields on the ambient space
The main drawback of the description of singletons as fields on the confor-
mal boundary (presented in the previous subsection) is that the conformal
symmetry is not manifest (dilatation symmetry is obvious but not the spe-
cial conformal and inversion symmetries). To circumvent this defect, one
may describe singletons as fields on the ambient space. Such a description
was initiated by Dirac in [2] and can be summarized for the scalar single-
ton as follows (see e.g. the section 3 of [14] for a review of this elegant
construction):
On the one hand, any space of functions of the inhomogeneous coordinates
on RPn+1 can be realized in terms of the homogeneous coordinates as a
space of homogeneous functions on Rn+2 of some fixed degree. On the
other hand, any space of functions on the null cone can be realized as a
space of equivalence classes of functions on the ambient space modulo the
functions which vanish on the null cone. The homogeneity degree is fixed by
the requirement that the Laplace-Beltrami operator on the ambient space
Rn,2 preserves the latter equivalence relation, so that this operator induces
the conformal Laplacian on the conformal boundary ∂AdSn+1.

Ambient construction of the scalar singleton (Dirac, 1936): The
scalar singleton o(n, 2)-module can be realized as a space of functions Φ(X)
on the ambient space Rn,2 which are
• harmonic: ¤Rn,2 Φ(X) = 0

• of homogeneity degree 1− n
2 : (XA∂A + n

2 − 1)Φ(X) = 0

• quotiented by the equivalence relation

Φ(X) ∼ Φ(X) + (XAXA) Ξ(X)

where Ξ(X) is of homogeneity degree −1− n
2 .

Remark: The operators ¤ , X · ∂X + n+2
2 , X2 are called (first class)

constraints and they span the symplectic algebra sp(2). This property
will be made manifest via Howe duality. These first-class constraints find
a natural interpretation in the “two-time physics” research programme of
Bars (see e.g. [15]). Actually, all constraints can equivalently be imposed
on the physical states.
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Ambient construction of the scalar singleton: The scalar singleton
module can be realized as a space of distributions

Ψ(X) := δ(X2)Φ(X)

on ambient space Rn,2 which are
• harmonic: ¤Ψ(X) = 0

• of homogeneity degree −1− n
2 : (X · ∂ + n+2

2 )Ψ(X) = 0

• annihilated by the quadratic form: X2 Ψ(X) = 0

The generalization of this construction to any spin [18] can be performed
in the language of multiform. Let ϑA

i be a set (where i = 1, 2, . . . , s− 1, s)
of fermionic coordinates

ϑA
i ϑB

j + ϑB
j ϑA

i = 0 ,

on Π(Rn,2 ⊗ Rs).

Definitions:An ambient multiform is

• a multiform on the ambient space Rn,2, i.e. a function Ψ(XA, ϑB
i ) on

the superspace Rn,2 ⊕ Π(Rn,2 ⊗ Rs).
• tangent to the anti de Sitter spacetime AdSn+1 if it is annihilated

by all operators XA ∂
∂ϑA

i
.

• tangent to the conformal boundary (∂AdS)n if it is annihilated
by all operators XA ∂

∂ϑA
i

and ∂
∂XA

∂
∂ϑi

A
.

The definitions of (co)closure and harmonicity for ambient multiforms are
the analogues of the ones for spacetime multiforms.

Ambient construction (Arvidsson & Marnelius, 2006): The ten-
sorial singleton o(n, 2)-module can be realized as a space of multiforms
Ψ(X,ϑ) on the ambient space Rn,2

• which are
– harmonic
– of homogeneity degree −1− n

2

– annihilated by X2

– tangent to the conformal boundary
• whose components span an irreducible o(n, 2)-module described by a

rectangular Young diagram made of s columns and n
2 + 1 rows.

This formulation is appealing because conformal symmetry is manifest,
unfortunately the price to pay is that locality is not manifest any more.
However, there exists a formulation [16] where both conformal invariance
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and locality are manifest. This is made possible by an ambient space con-
struction in the fiber rather than in the spacetime, along the lines of the
parent approach [17].
Remark: The various operators ¤ , X · ∂X + n+2

2 , X2, ∂
∂X · ϑi, ∂

∂X · ∂
∂ϑi

,
X · ∂

∂ϑi
, ∂

∂X · ∂
∂ϑi

. ϑi · ∂
∂ϑj

− δj
i

d+2
2 , ϑi · ϑj , and ∂

∂ϑi
· ∂

∂ϑj
which annihilate

the module span the orthosymplectic superalgebra osp(2s|2) of constraints.
This superalgebra finds a natural interpretation, on the mathematical side,
in terms of Howe duality, and, on the physical side, in terms of the o(2s) ex-
tended supersymmetric spinning particle (see e.g. [18, 19] and refs therein).

3.5. Singletons as kernels of the Howe dual algebra
An important message is that the orthosymplectic osp(2s|2) (super)algebra
of constraints annihilating the spin-s singleton module is the Howe dual of
the conformal algebra o(n, 2) acting on the singleton irreducible module.
For a concrete description of Howe duality, one may look e.g. at the the
section 3 of the review [20]. For the sake of simplicity, let us turn back to
the scalar singleton.

Let T ∗Rn,2 be the (trivial) cotangent bundle of the ambient space with
canonical
• Darboux coordinates Y A

α = (XA, PA) (where α = 1, 2)
• Poisson bracket

{Y A
α , Y B

β } = εαβ ηAB ⇐⇒ {XA, PB} = δA
B

where εαβ is the symplectic form of sp(2). The Weyl algebra An+2 is the
algebra of (polynomial) differential operators O(X,P) on the ambient space
Rn,2, where PA = − i ∂/∂XA. The Weyl algebra is isomorphic to the space
of Weyl symbols O(X, P ), i.e. (polynomial) functions on the cotangent
bundle T ∗Rn,2, endowed with the Moyal star product ∗ = exp i{ , }.
On the one hand, the algebra o(n, 2) = span{LAB} is linearly realized on
Rn,2 via the generators LAB = XAPB − XBPA whose Weyl symbols are
the bilinears

LAB = εαβY A
α Y B

β = XAPB −XBPA

On the other hand, the Lie algebra

sp(2) = span{uαβ}
can be presented
• by its generators uαβ = uβα (where α, β = 1, 2)
• modulo the commutation relations

[uαβ ,uγδ] = i εβγuαδ + symmetrizations .
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The Weyl symbols of the operators ¤ , X · ∂X + n+2
2 , X2 are the bilinears

Uαβ = ηABY A
α Y B

β

In both cases, the Weyl commutators (or Poisson brackets) of generators
reproduce the corresponding commutation relations. These respective re-
alizations of o(n, 2) and sp(2) are maximal commutants in the algebra of
quadratic Weyl symbols: they form a Howe dual pair.

Ambient construction of the scalar singleton: The scalar singleton
o(n, 2)-module is a space of distributions Ψ(X) on the ambient space Rn,2

which are annihilated by the sp(2) algebra, Howe dual to o(n, 2) in the
algebra of linear operators on Rn,2:

uαβΨ(X) = 0

The generalization to any integer spin s ∈ N is analogous [16]: The Grass-
mann even indices A,B will still correspond to the (n + 2)-dimensional
ambient space Rn,2 with metric ηAB but the letters α, β will now be su-
perindices corresponding to a (2|2s)-dimensional symplectic superspace

T ∗R1|s ∼= R2|2s

with symplectic form Jαβ . The symplectic form on the superspace R2|2s

can be seen as a metric form on the superspace R2s|2 ∼= Π(R2|2s) with op-
posite Grassmann parity. Therefore, the symplectic form Jαβ is manifestly
preserved by the orthosymplectic algebra osp (2s | 2). The multiforms are
functions on the superspace

Rn,2 ⊕ Π(Rn,2 ⊗ Rs) ∼= Rn+2 | s(n+2)

with
• n + 2 even coordinates XA on Rn,2

• s(n + 2) odd coordinates ϑA
i on Π(Rn,2 ⊗ Rs).

Let (PA|πi
B) be the conjugates of the supercoordinates (XA|θB

i ). The phase
(super)space coordinates on the cotangent bundle T ∗Rn+2|s(n+2) are collec-
tively denoted by

ZA
α := (XA, PB|θA

i , πj
B)

where the superindex α takes 2 + 2s values. The graded Poisson bracket
originating from the symplectic structure on the phase superspace is

{ZA
α , ZB

β } = ηABJαβ

⇐⇒ {XA, PB} = −{PB, XA} = δA
B , {θA

i , πj
B} = {πj

B, θA
i } = δA

Bδi
j .
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The phase space coordinates ZA
α are natural coordinates on the tensor

product Rn,2 ⊗ R2|2s. The algebra o(n, 2) is linearly realized on Rn,2 ⊕
Π(Rn,2 ⊗ Rs) as

JAB = XAPB −XBPA − i ϑA
i

∂

∂ϑi
B

+ i ϑB
i

∂

∂ϑi
A

The Weyl symbols of these generators of the algebra o(n, 2) are the bilinears

JAB = J αβZA
α ZB

β

The Lie superalgebra
osp(2s|2) = span{tαβ}

can be presented
• by its generators tαβ = tβα (where α, β = 1, 2)
• modulo the graded commutation relations

[tαβ ,tγδ] = iJβγtαδ + (anti)symmetrizations .

The Weyl symbols of the operators ¤ , X · ∂X + n+2
2 , X2, ∂

∂X ·ϑi, ∂
∂X · ∂

∂ϑi
,

X · ∂
∂ϑi

, ∂
∂X · ∂

∂ϑi
. ϑi · ∂

∂ϑj
− δj

i
d+2
2 , ϑi · ϑj , and ∂

∂ϑi
· ∂

∂ϑj
are the bilinears

Tαβ = ηABZA
α ZB

β

The Weyl graded commutators (or graded Poisson brackets) of generators
reproduce the corresponding graded commutation relations. The respective
realizations of o(n, 2) and osp(2s|2) are maximal commutants in the algebra
of quadratic Weyl symbols: they form a Howe dual pair.

Ambient construction of tensorial singletons [16]: The spin s ∈
N singleton module D(s + n

2 − 1 ; s, . . . , s) can be realized as a space of
distributions on the superspace Rn,2 ⊕Π(Rn,2⊗Rs) which are annihilated by
the osp(2s|2) superalgebra, which is Howe dual to o(n, 2) in the superalgebra
of linear operators on Rn,2 ⊕ Π(Rn,2 ⊗ Rs).

4. Higher-spin algebras: various definitions

4.1. Higher-spin algebras as realizations
of universal enveloping algebras

The simplest higher-spin algebra is the infinite-dimensional extension of the
algebra o(n, 2) used by Vasiliev in his construction of a higher-spin gavity
theory with AdSn+1 as maximally symmetric solution [21] conjectured to
be the holographic dual of a critical vector model on ∂AdSn+1.
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Definition (Vasiliev, 2003): The quotient of the universal enveloping
algebra U(o(n, 2)) by its annihilator on the scalar singleton module D(n

2 −
1; 0) is the AdSn+1/CFTn higher-spin algebra.

In other words, the complex AdSn+1/CFTn higher-spin algebra is the re-
alisation of the associative algebra U(o(n, 2)) on the module D(n

2 − 1; 0).3

4.2. Higher-spin algebras as centralizers of Howe dual algebras
The previous definition, based on the scalar singleton, is equivalent to a
purely algebraic definition, based on the above-mentioned sp(2) subalgebra
of An+2 (see e.g. [22] for a review of the proof).

Theorem (Vasiliev, 2003): The centraliser CAn+2( sp(2) ) of sp(2) ⊂
An+2 possesses two ideals spanned by the elements that also belong either
to sp(2)An+2 or to An+2sp(2) . The quotient of the centraliser by any of
these ideals is the AdSn+1/CFTn higher-spin algebra.

4.3. Higher-spin algebras as invariants of Howe dual algebras
In order to translate the previous abstract definitions into a very concrete
and explicit realization, Vasiliev made use [21] of two major contributions
of Weyl: symmetric symbol calculus and classical invariant theory (see e.g.
[22] for more details).

Theorem (Vasiliev, 2003): The AdSn+1/CFTn higher-spin algebra is
isomorphic to the algebra of sp(2)-invariant Weyl symbols ∈ An+2 modulo
o(n, 2)-traces. This space is spanned by the equivalence class of polynomi-
als that depend on the phase space variables Y A

α only through the combi-
nation LAB = εαβY A

α Y B
β , modulo the polynomials which are proportional

to Uαβ = ηABY A
α Y B

β . The restriction of the adjoint representation of the
AdSn+1/CFTn higher-spin algebra to the o(n, 2) subalgebra is decomposable
as the multiplicity free direct sum of all finite-dimensional o(n, 2)-modules
labeled by rectangular Young diagrams made of two rows.

4.4. Higher-spin algebras as algebras of symmetries
The scalar singleton module D(n

2 − 1; 0) may be realized as a space of
distributions on Rn,2 in the kernel of the representation of the algebra
sp(2) ⊂ An+2, so a natural definition for its symmetries arise:

• A symmetry generator of the scalar singleton is an element of
the centralizer of sp(2) in the space An+2 quotiented by the subspace
An+2sp(2), i.e. a differential operator o on Rn,2 that weakly commutes
with all operators tαβ in the sense that: [o ∗, tαβ] = Pγδ

αβtγδ.

3Strictly speaking, the higher-spin algebra defined in [21] is a real form of the complex
algebra considered here for the sake of simplicity (see e.g. the section 5 of the review [20]
for more details).
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• A trivial symmetry generator of the scalar singleton is a sym-
metry generator that belongs to the left ideal An+2sp(2), i.e. that
vanishes on the kernel of the operators tαβ .

• An algebra of symmetries is an algebra of equivalence classes of
symmetry generators.

The equation uαβΨ(X) = 0 for the distribution Ψ on Rn,2 describing the
scalar singleton is preserved by the transformation Ψ 7→ OΨ when O is a
symmetry generator, and OΨ = 0 when the symmetry generator is trivial.
The realisation of the associative algebra U(o(n, 2)) on the scalar singleton
module D(n

2 − 1; 0) is automatically an algebra of such symmetry genera-
tors. Indeed, one of the leitmotiv behind higher-spin symmetries is that,
while super symmetries correspond to “square roots” of isometry genera-
tors, higher symmetries are “powers” of isometry generators.

Theorem (Eastwood, 2002): The AdSn+1/CFTn higher-spin algebra
is the subalgebra of the Weyl algebra An+2 of differential operators on the
ambient space Rn,2, spanned by (the equivalence classes of) the symmetry
generators of the free scalar singleton.

Let us finally turn back to the tensorial singletons. The spin s ∈ N
singleton module D(s + n

2 − 1 ; s, . . . , s, 0) may be realized as a space of
distributions on the superspace Rn,2 ⊕ Π(Rn,2 ⊗ Rs) annihilated by the
osp(2s|2) superalgebra, which is Howe dual to o(n, 2). Following the previ-
ous track, two natural definitions arise:
• A symmetry generator of a free spin s singleton is an element of

the centralizer of osp(2s|2 =) ⊂ An+2|s(n+2) in the space An+2|s(n+2)

quotiented by the subspace An+2|s(n+2)osp(2s|2), i.e. a differential
operator that commutes with all operators tαβ on their kernel.

• A trivial symmetry generator of a spin s singleton is a symme-
try generator that vanishes on the spin s singleton module.

With the help of two ingredients (the Howe duality and the Sergeev theory
of classical Lie superalgebra invariants), one can determine the

Singleton maximal symmetry algebra [16]: The following algebras
are isomorphic:
• The maximal algebra of symmetry generators of a free spin s singleton
• The realization of the universal enveloping algebra U(o(n + 2)) on the

spin s singleton module D(s + n
2 − 1 ; s, . . . , s, 0).

• The subalgebra of differential operators on the superspace Rn+2|s(n+2)

whose Weyl symbols are osp(2s|2)-invariants modulo o(n + 2)-traces
Moreover, the adjoint representation of these algebras is a completely re-
ducible o(n, 2)-module which decomposes as the sum of all irreducible o(n, 2)-
modules labeled by Young diagrams such that
• (i) all columns are of even length,
• (ii) the sum of the lengths of any two columns is not greater than n+2,

and
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• (iii) any column on the right of the 2s-th column is of length two,
where each such irreducible module appears with multiplicity one.

Remarks: These results
• generalize the previous works on the particular cases: any n ≥ but

s = 0 [14, 21] or any s ∈ N/2 but n = 4 [23]
• are formulated in terms of the above ambient definition of singleton

symmetries, somewhat stronger than the local definitions adopted in
[14, 16].4

• can be summarized in a slogan (which will be my conclusion):
All symmetry generators of a free singleton are polynomials in the
isometry generators.
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