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Abstract

Operatorial methods offer an insightful alternative to the usual Wigner-
Weyl-Moyal approach to noncommutative field theories. In particular
one can prove easily that the elementary degrees of freedom are bilo-
cal, and live on a reduced configuration space. Causality issues be-
come particularly transparent in this framework. Dispersion relations
can also be formulated in a quite standard way.

1. Introduction

Consider a scalar field φ defined over an operatorial space-time,

φ = φ(x̂µ), [x̂µ, x̂ν ] = iθµν(x̂), (1)

with xµ ∈ {x0 = t, x1 = x, x2 = y, x3 = z}. For technical reasons, let us
restrict to a commutative time t, a commutative z-axis, and a Heisenberg
type noncommutativity

[x̂, ŷ] = iθÎ. (2)

Î is the identity operator; θ is a constant having the dimension of an area.
One should wonder why such a theory is interesting. Historically, Heisen-
berg hoped that such noncommutativity may smooth out divergences in
quantum field theory. Through Pauli and Oppenheimer this idea reached
Snyder, who wrote the first paper on the subject [1]. The hope of Heisen-
berg was not borne out, however, in spite of interesting developments. An-
other reason, which will emerge in what follows, is that this theory is non-
local, apparently the first nonlocal theory that can be kept under relatively
good control. However, causality is usually an issue in nonlocal theories.
It will be one of our main concerns.
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Nonrelativistically, causality simply means that some cause-effect ordering
is respected. Relativistically, one must add the condition that any velocity
related to some physical propagation should be at most the velocity of light,
v ≤ c. For a quantum field φ depending on xµ = (x0 = t, x1, x2, x3) this
formulation is not very useful however. One takes as an axiom the so-called
micro-causality condition

[φ(x), φ(0)] = 0, t2 − ~x2 ≤ 0. (3)

It reflects the assumption that two events having space-like separation can-
not influence each other.
Causality of noncommutative field theory (NCFT) is discussed in less than
1% of the literature of the subject, and even then with contradictory results
[2, 3],[6, 7, 8], [9, 10, 11, 12].
The reason for the confusion is the use of the Weyl-Moyal quantization
procedure, in which NC space is mapped to a continuum of same dimen-
sionality, parameterized by the so-called Weyl symbols. By necessity, a
”point” in Weyl symbol space has no precise correspondent in the physical
(NC) space. The product of functions gets deformed to the Moyal star
product

f(x) · g(x) → f(x) ? g(x) ≡ lim
y→x

exp
(

i

2
θµν∂x

µ∂y
ν

)
f(x)g(y). (4)

Two ambiguities appear while extending (3) to NC fields:
1. Is the commutator or the star-commutator [2] appropriate in (3)?
2. What is a ”space-like interval” when coordinates can not be sharply
measured simultaneously? Several conditions were used in the literature,
for events separated by the quadri-vector (∆t, ∆~r) in Weyl space:

a) usual light-cone [9]: ∆t2 −∆x2 −∆y2 −∆z2 ≤ 0 - too strong.
b) ”light-wedge” condition: ∆t2 − ∆z2 ≤ 0 [6, 7] - too weak. If no z is
available, then one returns to nonrelativistic dynamics...
c) intermediate: ∆t2 −∆z2 ≤ 2θ - still inappropriate [8].
Our proposal will be to drop one of the two noncommuting coordinates
(say y), and then require zero commutator provided ∆t2−∆x2−∆z2 ≤ 0,
but in physical space, not in Weyl space. We will show - disproving previous
claims, that NC theories with commuting time are causal.

2. Dimensional Reduction and Bilocality

Consider a (2 + 1)-dimensional scalar Φ(t, x̂, ŷ), defined over a commuting
time t and a pair of NC coordinates satisfying [x̂, ŷ] = iθÎ. The operators x̂
and ŷ act on a harmonic oscillator Hilbert spaceH in the usual way. Choose
here the basis {|x >} of eigenstates of x̂: x̂|x >= x|x >, ŷ|x >= −iθ ∂

∂x |x >.
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To quantize Φ [4], start with a usual classical commuting field, expanded
into normal modes with coefficients a and a∗. Upon usual field quantization,
a and a∗ become operators acting on a standard Fock space F . To introduce
NC space, apply the Weyl (not Weyl-Moyal!) quantization procedure to the
exponentials ei(kxx+kyy). The result is

Φ =
∫ ∫

dkxdky

2π
√

2ω~k

[
âkxkye

i(ω~k
t−kxx̂−ky ŷ) + â†kxky

e−i(ω~k
t−kxx̂−ky ŷ)

]
. (5)

Φ acts on a direct product of two Hilbert spaces, Φ : F ⊗ H → F ⊗ H.
It creates (destroys) excitations represented by ”operatorial plane wave”
ei(ω~k

t−kxx̂−ky ŷ).
It is simpler to saturate the action of Φ on H by working with expectation
values < x′|Φ|x >: F → F . Bilocality appears explicitly due to:

< x′|ei(kxx̂+ky ŷ|x >= eikx(x+kyθ/2)δ(x′ − x− kyθ) = eikx
x+x′

2 δ(x′ − x− kyθ).
(6)

The span along the x axis is (x′ − x) = θky, and the energy is [4]

ω~k
=

√
k2

x +
∆x2

θ2
+ m2. (7)

One notices the intrinsic IR/UV-dual character of the dipoles: both big
momentum (UV) and big extension (IR) give big energy. The second term
reminds a string stretched between two separated D-branes. Finally,

< x′|Φ|x >=
∫

dkx

2π
√

2ωkx,ky

[
âkx,kye

i(ω~k
t−kx

x+x′
2

) + â†kx,−ky
e−i(ω~k

t+kx
x+x′

2
)

]

(8)
with ky = (x′−x)/θ. Thus, < x′|Φ|x > annihilates a linear combination of
rods of (arbitrary) momentum kx and (fixed) length θky, and creates rods
of momentum kx and length −θky. It is not anymore a local operator, in
contrast to usual field theory. Failure to recognize that feature explicitly in
the Moyal formulation may lead to erroneous conclusions about causality
(see [3] however).

3. Perturbation Theory

Correlators
Two-point correlation functions for dipoles are built out of

〈0|< x4|Φ|x3><x2|Φ|x1>|0〉=
∫

dkx

8π2ω~k

eikx[
x3+x4

2
−x1+x2

2
]δ(x4−x3−x2+x1).

(9)
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Above, ky = (x′ − x)/θ is fixed, ω~k
= ωkx,ky obeys (7). Eq. (9) differs

from usual (1 + 1)-correlators, 〈0|φ(X2)φ(X1)|0〉, with X1 = (x1 + x2)/2
and X2 = (x3 + x4)/2, through a. the (x′−x)2

θ2 term in (7), b. the delta
function δ([x4 − x3] − [x2 − x1]), which ensures that the length of the rod
is conserved.

Interactions
The action is

S =
1
2

∫
dtTrH

[
Φ̇2 − (∂xΦ)2 − (∂yΦ)2 −m2Φ2 − 2V (Φ)

]
. (10)

We will exemplify with a quartic potential, V (Φ) = g
4!Φ

4, which can be
written in our bilocal notation as
∫

dtTrHV (Φ) =
g

4!

∫
dt

∫

x,a,b,c
< x|Φ|a >< a|Φ|b >< b|Φ|c >< c|Φ|x > .

(11)
The basic ‘vertex’ for four-dipole scattering follows from

〈−~k3,−~k4| :
∫

dt

∫

x,a,b,c
< x|Φ|a >< a|Φ|b >< b|Φ|c >< c|Φ|x >: |~k1,~k2〉.

(12)
The momenta ~ki,i=1,2,3,4 each have two components: ~ki = (ki, li). ki is the
momentum along x, whereas li represents the dipole extension along x. One
obtains the conservation laws k1 +k2 +k3 +k4 = 0 and l1 + l2 + l3 + l4 = 0.
The final result differs from the four-point scattering vertex of (2 + 1)
commutative particles with momenta ~ki = (ki, li) only through the phase

e−
iθ
2

∑
i<j(kilj−likj). (13)

This is precisely the star-product modification of the usual Feynman rules.
The phase (13) appears due to the bilocal nature of generic < x′|Φ|x >’s.
One has to integrate over both the momentum and length of the dipole
circulating in a loop. This 1

2π

∫
dkloop

∫
dlloop integration, together with the

dispersion relation (7), brings back into play - especially as far as diver-
gences are concerned - the y direction.

IR/UV
The momentum in the conjugate (y) direction became the lenght (∆x) of
the dipole.
Consider (4 + 1)-dimensions, t, x̂, ŷ, ẑ, û, with [x̂, ŷ] = [ẑ, ŵ] = iθ. In the
{|x, z >} basis, one has a commutative space spanned by the axes x and
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z, on which dipoles with momentum ~p = (px, pz) and length ~l = (lx, lz) =
θ(py, pw) evolve. During the scattering, four such dipoles meet in a four-
edged polygon of area A (figure 1a).
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figure 1: Area versus finiteness

The one-loop correction to the propagator involves both planar and non-
planar diagrams, as follows.
Planar case: adjacent dipole fields are contracted. Momentum and length
conservation enforce the polygon to degenerate into a one-dimensional,
zero-area object (figure 1b). UV divergences persist.
Nonplanar case: due to the nonadjacent contraction the area A does not
go to zero (figure 1c) unless the external dipole length vanishes (figure 1d).
A 6= 0 appears thus to be related to the disappearance of UV divergences.
Actually, the true regulator is the phase (13), which is ineffective when
A = 0 in both the |x, z > and |y, u > bases. That corresponds to zero
external length and momentum in the dipole picture, which means that
the resulting divergence is half IR (~pext = 0) and half UV (~lext = 0)! In
Weyl space this is just the usual zero external momentum, say pext

µ = 0, and
one speaks about an IR divergence. NCFT is somehow in between usual
FT and string theory: when the interaction vertex is a point, UV infinities
appear; when it opens up, amplitudes are finite.

4. Symmetries

Introduce the representation of the previous sections in the equations of
motion, and reintroduce the commutative z direction. We use the notation

< x′|φ|x >≡ φ(x′, x) ≡ φ(x̄,∆x), x̄ ≡ x + x′

2
, ∆x ≡ (x′ − x) (14)
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The free equations of motion follow from the action

S = TrH

∫
dt

∫
dz

(
(φ̇)2 +

1
θ2

[x̂, φ]2 +
1
θ2

[ŷ, φ]2 − (∂zφ)2 + m2φ2

)
, (15)

and are written operatorially for φ(t, x̂, ŷ, z) as

(∂2
t − ∂2

z + m2)φ +
1
θ2

[ŷ, [ŷ, φ]] +
1
θ2

[x̂, [x̂, φ]] = 0, (16)

which is nothing else than an operatorial wave equation, given that (2)
implies

[x̂, φ(x̂, ŷ)] = iθ
∂φ

∂ŷ
[ŷ, φ(x̂, ŷ)] = −iθ

∂φ

∂x̂
. (17)

Sandwiching the operatorial equation between |x > states, one gets rid of
noncommutativity and obtains the wave equation

(
∂2

t − ∂2
x̄ − ∂2

z +
(x′ − x)2

θ2
+ m2

)
φ(x, x′) = 0. (18)

for a dipole living in (2+1) commutative dimensions at t, x̄, z and hav-
ing extension ∆x. We notice the full agreement with the dispersion rela-
tion (7). Eq. (18) follows from < x′|[x̂, [x̂, φ]]|x >= (x′ − x)2φ and from
< x′|[ŷ, [ŷ, φ]]|x >= −∂x̄φ(x̄,∆x) [to obtain the latter, operate with the
commutator on φ(x̂, ŷ), Fourier expand, sandwich between |x > bras and
kets]. In the interacting case, the relevant Lagrangian is thus

2L = (∂tφ)2 − (∂x̄φ)2 + [(θ−1∆x)2 + m2]φ2 − 2V (φ) (19)

and includes the potential V (φ) for the fields, for instance V = λφ4. The
Lagrangian L has the property of being invariant under Lorentz boosts
along the x̄-axis, as well as along the z-axis, independently. The only think
to prove in this respect is the invariance of the third term in the RHS. This
immediately follows from the tensorial character of θ = θxy ∼ xy and the
usual Lorentz transformation of ∆x. These symmetries, which we found
in the bilocal representation for NC space, are at variance with the claims
usually made within the Moyal approach, that the symmetry group is the
product between the rotation group O(2) in the x − y NC space and the
Lorentz group O(1, 1) in t− z space.

5. Causality

Free NC fields behave like lower-dimensional commutative fields. A free
(1+1)-dimensional dipole [resulting from a 2+1 NC theory] with endpoints
situated at x and x′ behaves like a commutative (1 + 1) point particle
centered at x+x′

2 , but with a modified dispersion relation ω2 = k2
x+ (x−x′)2)

θ2 .



Causal Propagation in Noncommutative Field Theory 7

In conclusion causality is demonstrated in the same way as for free fields.
Free NC field theories are thus causal, contrary to previous claims [2].
For interacting fields, one expects the dipolar character of the degrees of
freedom to manifest, as e.g. in perturbation theory [4]. It is however re-
markable that as far as the micro-causality condition is concerned, bilocality
has little influence. For, consider the vanishing of the commutator to hold,

[φ(t1, x̄1), φ(t2, x̄2)] = 0 (20)

with x̄1 = x1+x′1
2 , x̄2 = x2+x′2

2 being the average positions (centers of mass)
of the two dipoles considered. We want (20) to be true when the interval,
defined with respect to the average dipole positions, is space-like,

(t1 − t2)2 − (x̄1 − x̄2)2 ≤ 0. (21)

Equations (20, 21) are however generically equivalent to

[φ(t, x̄), φ(t, ȳ)] = 0, ~x 6= ~y, (22)

provided one can apply a boost along x to render equal the two times
appearing in Eq. (20).
This requires the (1 + 1)-dimensional dipole theory to be invariant under
boosts in the x-direction, which we already demonstrated. (a fact com-
pletely overlooked in the literature, which claims that the only invariance
left after NC is imposed is a product of O(2) for the NC part and of the
Lorentz group, e.g. SO(1, 1), for the rest). In consequence, Eqs. (20, 21)
are tantamount, via a boost, to

eiH′t[φ(0, x̄), φ(0, ȳ)]e−iH′t = 0 (23)

which is true at t = 0, since this is by definition the time at which the fields
behave like free fields (H ′ denotes the interacting part of the Hamiltonian,
including V , in the interaction representation).
Adding now the (passive) commutative coordinate z, we conclude that the
correct causality criterion for NCFT is

[φ(t1, x̄1, z1), φ(t2, x̄2, z2)] = 0, (t1−t2)2−(x̄1−x̄2)2−(z1−z2)2 ≤ 0. (24)

6. Dispersion Relations

Classical
A signal A(t) is zero for t < 0 provided its Fourier transform a(ω) is ana-
lytic in the upper half-plane (for Imω ≥ 0). For light propagation in one
dimension, t is replaced by τ ≡ t − z/c. The above applies to (linear)
transfer functions in general.
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If one goes to three dimensions and looks at propagation at nonzero angles
with respect to the propagation axis (z), the situation is more complicated
but will not concern us here. For massive particles (v < c) an impedi-
ment also appears: one has to use frequencies ω ∈ (−m,m), hence in the
unphysical region, to form sharp wave packets.

Dipoles
In NCFT, the most one can hope for a localized quanta is a dipole with
end-points localized at x and x′ on the x-axis, with center-of-mass at x̄ =
x+x′

2 moving on the trajectory x0(t). If the dipole length is fixed to be
x′ − x ≡ ∆x = l > 0, the excitation has the form

δ(
x + x′

2
− x0(t))δ(x− x′ − l) =

1
2π

∫ +∞

−∞
dkxe[ikxx̄−x0(t)]δ(∆x− l) (25)

(alternatively, integration over the dipole size ∆x = kyθ is possible). Con-
sider now the scattering in one-space dimension of such dipoles via an ob-
stacle sitting at x = 0 (perfect localization along x means the scatterer has
no momentum along y, otherwise a width in x would appear for it too). We
let approach from the left an incident bipolar excitation of the type (25),
at constant velocity,

x0(t) = vt, v =
ω

kx
. (26)

The resulting field, incident plus scatterer, will be of the forma

Finc(x, x′, t) + Fscatt(r, r′, t) ∼ δ(x̄− ωt/k)δ(∆x− l)

+
∫

dωf(ω)ei(kr̄−ωt)δ(∆r − L). (27)

L ≡ r′− r denotes the dipolar length of the scattered wavelets, with dipole
end-points r and r′ and center of mass at r̄. Given that we are in one-
dimension, no 1

r factor is present, and no angular dependence appears in
the scattering amplitude f(ω), which is a function only of the frequency
and characterizes the scatterer. Causality will provide constraints on f in
much the same way as is usual, with minor complications described below.
The center-of-mass of the incident wave-packet arrives (from the left) at
the origin x = 0 at time t = 0. This means its advanced end-point, x′,
reaches the origin at −∆t = − l

2v . By way of causality, there will be no
scattered signal before that moment. Admitting that the scattered signal
propagates with at most the speed of light, we will in general have

Fscatt(r, r′, t) = 0 if r′ ≥ c(t + ∆t), (28)

or (v2 = v1 for localized target)

Fscatt(r, r′, t) =
∫

dωf(ω)e−iω(t−r′/v)e−ikδr/2δ(∆r − L) = 0 (29)
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for

τ ≡ t− r′

c
≤ −∆t. (30)

This implies that

e−ikδr/2δ(∆r − L)f(ω) =
∫ ∞

−∆t
F (r, r′, τ) (31)

is analytic in the upper complex ω-plane, on account of the finite inferior
limit in the Fourier integral (the new fact here that this limit is non-zero is
irrelevant to the dispersion relation standard derivation arguments).

Analyticity via LSZ
The derivation of dispersion relations through the LSZ formalism seems
insensitive to NC [12] (see also [10]). For an opposite opinion, see [11].
Starting with the usual assumptions, |~k, in >= |~k, out > for one-particle
states, < 0|j(x)|~k >= 0 for the current j(x) ≡ (∂2

t −∇2 + m2)Φ, we define

Sfi ≡< f, out|i, in >=< f, in|S|i, in > .

The retarded commutator reads R(A(x), B(y)) = θ(x0 − y0)[A(x), B(y)].
The free field expansion stays the same,

Φin(x) =
1

(2π)3

∫
d3~k√
2ω~k

(â~k
e−ikx + H.C.),

and only the expression for â~k
changes slightly,

â~k
= i(2π)3/2

∫

z
TrH

eikx

√
2ω~k

∂̂0Φ(x).

For forward scattering (p′ = p, q′ = q, k = p+q), Sfi = δfi−2πiδ(pf−pi)Tfi,

Tfi
LSZ∼

∫
d4weikw < p|R[j(w/2)j(−w/2)]|p > (32)

is an analytic function of k0 in the upper half-plane, although expressions
are less explicit, due to lack of spherical symmetry.
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